Momentum Budget over the Pyrnes: The PYREX Experiment

Momentum Budget over the Pyrnes: The PYREX Experiment Although the qualitative influence of mountains over the atmosphere has been known for a long time, numerous deficiencies, linked to orography, are still noted, either in forecasts by regional models, or in the long-term behavior of climate models. This is why the French and Spanish weather services are undertaking an important field campaign to document the dynamic modifications to the atmospheric flow generated by the Pyrenean range during a 2-month period (October and November 1990) with six intensive observation periods (IOPs) of 2 to 3 days. The experimental strategy is based largely on mesoscale numerical-model results and will help to validate these models. The main focus is on the documentation of clear-air turbulence generated either by breaking mountain waves, by surface roughness, or by the wind shear induced by the lateral-flow deviation around the mountain. Experimental means include several networks of surface stations, radio soundings, constant-level balloons, four wind profilers, and several research aircraft. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Momentum Budget over the Pyrnes: The PYREX Experiment

Loading next page...
 
/lp/ams/momentum-budget-over-the-pyrnes-the-pyrex-experiment-ovZo5x8jmH
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1990)071<0806:MBOTPT>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Although the qualitative influence of mountains over the atmosphere has been known for a long time, numerous deficiencies, linked to orography, are still noted, either in forecasts by regional models, or in the long-term behavior of climate models. This is why the French and Spanish weather services are undertaking an important field campaign to document the dynamic modifications to the atmospheric flow generated by the Pyrenean range during a 2-month period (October and November 1990) with six intensive observation periods (IOPs) of 2 to 3 days. The experimental strategy is based largely on mesoscale numerical-model results and will help to validate these models. The main focus is on the documentation of clear-air turbulence generated either by breaking mountain waves, by surface roughness, or by the wind shear induced by the lateral-flow deviation around the mountain. Experimental means include several networks of surface stations, radio soundings, constant-level balloons, four wind profilers, and several research aircraft.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off