Moist Absolute Instability: The Sixth Static Stability State

Moist Absolute Instability: The Sixth Static Stability State It is argued that a sixth static stability state, moist absolute instability, can be created and maintained over mesoscale areas of the atmosphere. Examination of over 130 000 soundings and a numerical simulation of an observed event are employed to support the arguments in favor of the existence of moist absolutely unstable layers (MAULs).Although MAULs were found in many different synoptic environments, of particular interest in the present study are the deep ( 100 mb) layers that occur in conjunction with mesoscale convective systems (MCSs). A conceptual model is proposed to explain how moist absolute instability is created and maintained as MCSs develop. The conceptual model states that strong, mesoscale, nonbuoyancy-driven ascent brings a conditionally unstable environmental layer to saturation faster than small-scale, buoyancy-driven convective elements are able to overturn and remove the unstable state. Moreover, since lifting of a moist absolutely unstable layer warms the environment, the temperature difference between the environment and vertically displaced parcels is reduced, thereby decreasing the buoyancy of convective parcels and helping to maintain the moist absolutely unstable layer.Output from a high-resolution numerical simulation of an event exhibiting this unstable structure supports the conceptual model. In particular, the model indicates that MAULs can exist for periods greater than 30 min over horizontal scales up to hundreds of kilometers along the axis of the convective region of MCSs, and tens of kilometers across the convective region.The existence of moist absolute instability suggests that some MCSs are best characterized as slabs of saturated, turbulent flow rather than a collection of discrete cumulonimbus clouds separated by subsaturated areas. The processes in MAULs also help to explain how an initially unsaturated, stably stratified, midlevel environment is transformed into the mesoscale area of saturated moist-neutral conditions commonly observed in the stratiform region of mesoscale convective systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Moist Absolute Instability: The Sixth Static Stability State

Loading next page...
 
/lp/ams/moist-absolute-instability-the-sixth-static-stability-state-yNzPygauSM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

It is argued that a sixth static stability state, moist absolute instability, can be created and maintained over mesoscale areas of the atmosphere. Examination of over 130 000 soundings and a numerical simulation of an observed event are employed to support the arguments in favor of the existence of moist absolutely unstable layers (MAULs).Although MAULs were found in many different synoptic environments, of particular interest in the present study are the deep ( 100 mb) layers that occur in conjunction with mesoscale convective systems (MCSs). A conceptual model is proposed to explain how moist absolute instability is created and maintained as MCSs develop. The conceptual model states that strong, mesoscale, nonbuoyancy-driven ascent brings a conditionally unstable environmental layer to saturation faster than small-scale, buoyancy-driven convective elements are able to overturn and remove the unstable state. Moreover, since lifting of a moist absolutely unstable layer warms the environment, the temperature difference between the environment and vertically displaced parcels is reduced, thereby decreasing the buoyancy of convective parcels and helping to maintain the moist absolutely unstable layer.Output from a high-resolution numerical simulation of an event exhibiting this unstable structure supports the conceptual model. In particular, the model indicates that MAULs can exist for periods greater than 30 min over horizontal scales up to hundreds of kilometers along the axis of the convective region of MCSs, and tens of kilometers across the convective region.The existence of moist absolute instability suggests that some MCSs are best characterized as slabs of saturated, turbulent flow rather than a collection of discrete cumulonimbus clouds separated by subsaturated areas. The processes in MAULs also help to explain how an initially unsaturated, stably stratified, midlevel environment is transformed into the mesoscale area of saturated moist-neutral conditions commonly observed in the stratiform region of mesoscale convective systems.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 22, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial