Modulation of the Agulhas Current Retroflection and Leakage by Oceanic Current Interaction with the Atmosphere in Coupled Simulations

Modulation of the Agulhas Current Retroflection and Leakage by Oceanic Current Interaction with... AbstractCoupled ocean–atmosphere simulations are carried out for the Mozambique Channel, the Agulhas Current system, and the Benguela upwelling system to assess the ocean surface current feedback to the atmosphere and its impact on the Agulhas Current (AC) retroflection and leakage. Consistent with previous studies, the authors show that the current feedback slows down the oceanic mean circulation and acts as an oceanic eddy killer by modulating the energy transfer between the atmosphere and the ocean, reducing by 25% the mesoscale energy and inducing a pathway of energy transfer from the ocean to the atmosphere. The current feedback, by dampening the eddy kinetic energy (EKE), shifts westward the distribution of the AC retroflection location, reducing the presence of eastern retroflections in the simulations and improving the realism of the AC simulation. By modulating the EKE, the AC retroflection and the Good Hope jet intensity, the current feedback allows a larger AC leakage (by 21%), altering the water masses of the Benguela system. Additionally, the eddy shedding is shifted northward and the Agulhas rings propagate less far north in the Atlantic. The current–wind coupling coefficient sw is not spatially constant: a deeper marine boundary layer induces a weaker sw. Finally the results indicate that the submesoscale currents may also be weakened by the current feedback. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Modulation of the Agulhas Current Retroflection and Leakage by Oceanic Current Interaction with the Atmosphere in Coupled Simulations

Loading next page...
 
/lp/ams/modulation-of-the-agulhas-current-retroflection-and-leakage-by-oceanic-J8qcuMmYHt
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
D.O.I.
10.1175/JPO-D-16-0168.1
Publisher site
See Article on Publisher Site

Abstract

AbstractCoupled ocean–atmosphere simulations are carried out for the Mozambique Channel, the Agulhas Current system, and the Benguela upwelling system to assess the ocean surface current feedback to the atmosphere and its impact on the Agulhas Current (AC) retroflection and leakage. Consistent with previous studies, the authors show that the current feedback slows down the oceanic mean circulation and acts as an oceanic eddy killer by modulating the energy transfer between the atmosphere and the ocean, reducing by 25% the mesoscale energy and inducing a pathway of energy transfer from the ocean to the atmosphere. The current feedback, by dampening the eddy kinetic energy (EKE), shifts westward the distribution of the AC retroflection location, reducing the presence of eastern retroflections in the simulations and improving the realism of the AC simulation. By modulating the EKE, the AC retroflection and the Good Hope jet intensity, the current feedback allows a larger AC leakage (by 21%), altering the water masses of the Benguela system. Additionally, the eddy shedding is shifted northward and the Agulhas rings propagate less far north in the Atlantic. The current–wind coupling coefficient sw is not spatially constant: a deeper marine boundary layer induces a weaker sw. Finally the results indicate that the submesoscale currents may also be weakened by the current feedback.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off