Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM

Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM AbstractThis paper introduces an idealized general circulation model (GCM) in which water vapor and clouds are tracked as tracers, but are not allowed to affect circulation through either latent heat release or cloud radiative effects. The cloud scheme includes an explicit treatment of cloud microphysics and diagnoses cloud fraction from a prescribed subgrid distribution of total water. The model is capable of qualitatively capturing many large-scale features of water vapor and cloud distributions outside of the boundary layer and deep tropics. The subtropical dry zones, midlatitude storm tracks, and upper-tropospheric cirrus are simulated reasonably well. The inclusion of cloud microphysics (namely rain re-evaporation) has a modest but significant effect of moistening the lower troposphere in this model. When being subjected to a uniform fractional increase of saturated water vapor pressure, the model produces little change in cloud fraction. A more realistic perturbation, which considers the nonlinearity of the Clausius–Clapeyron relation and spatial structure of CO2-induced warming, results in a substantial reduction in the free-tropospheric cloud fraction. This is reconciled with an increase of relative humidity by analyzing the probability distributions of both quantities, and may help explain partly similar decreases in cloud fraction in full GCMs. The model provides a means to isolate individual processes or model components for studying their influences on cloud simulation in the extratropical free troposphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM

Loading next page...
 
/lp/ams/modeling-water-vapor-and-clouds-as-passive-tracers-in-an-idealized-gcm-95qd43BN8T
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0812.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper introduces an idealized general circulation model (GCM) in which water vapor and clouds are tracked as tracers, but are not allowed to affect circulation through either latent heat release or cloud radiative effects. The cloud scheme includes an explicit treatment of cloud microphysics and diagnoses cloud fraction from a prescribed subgrid distribution of total water. The model is capable of qualitatively capturing many large-scale features of water vapor and cloud distributions outside of the boundary layer and deep tropics. The subtropical dry zones, midlatitude storm tracks, and upper-tropospheric cirrus are simulated reasonably well. The inclusion of cloud microphysics (namely rain re-evaporation) has a modest but significant effect of moistening the lower troposphere in this model. When being subjected to a uniform fractional increase of saturated water vapor pressure, the model produces little change in cloud fraction. A more realistic perturbation, which considers the nonlinearity of the Clausius–Clapeyron relation and spatial structure of CO2-induced warming, results in a substantial reduction in the free-tropospheric cloud fraction. This is reconciled with an increase of relative humidity by analyzing the probability distributions of both quantities, and may help explain partly similar decreases in cloud fraction in full GCMs. The model provides a means to isolate individual processes or model components for studying their influences on cloud simulation in the extratropical free troposphere.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off