Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM

Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM AbstractThis paper introduces an idealized general circulation model (GCM) in which water vapor and clouds are tracked as tracers, but are not allowed to affect circulation through either latent heat release or cloud radiative effects. The cloud scheme includes an explicit treatment of cloud microphysics and diagnoses cloud fraction from a prescribed subgrid distribution of total water. The model is capable of qualitatively capturing many large-scale features of water vapor and cloud distributions outside of the boundary layer and deep tropics. The subtropical dry zones, midlatitude storm tracks, and upper-tropospheric cirrus are simulated reasonably well. The inclusion of cloud microphysics (namely rain re-evaporation) has a modest but significant effect of moistening the lower troposphere in this model. When being subjected to a uniform fractional increase of saturated water vapor pressure, the model produces little change in cloud fraction. A more realistic perturbation, which considers the nonlinearity of the Clausius–Clapeyron relation and spatial structure of CO2-induced warming, results in a substantial reduction in the free-tropospheric cloud fraction. This is reconciled with an increase of relative humidity by analyzing the probability distributions of both quantities, and may help explain partly similar decreases in cloud fraction in full GCMs. The model provides a means to isolate individual processes or model components for studying their influences on cloud simulation in the extratropical free troposphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Modeling Water Vapor and Clouds as Passive Tracers in an Idealized GCM

Loading next page...
 
/lp/ams/modeling-water-vapor-and-clouds-as-passive-tracers-in-an-idealized-gcm-95qd43BN8T
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0812.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper introduces an idealized general circulation model (GCM) in which water vapor and clouds are tracked as tracers, but are not allowed to affect circulation through either latent heat release or cloud radiative effects. The cloud scheme includes an explicit treatment of cloud microphysics and diagnoses cloud fraction from a prescribed subgrid distribution of total water. The model is capable of qualitatively capturing many large-scale features of water vapor and cloud distributions outside of the boundary layer and deep tropics. The subtropical dry zones, midlatitude storm tracks, and upper-tropospheric cirrus are simulated reasonably well. The inclusion of cloud microphysics (namely rain re-evaporation) has a modest but significant effect of moistening the lower troposphere in this model. When being subjected to a uniform fractional increase of saturated water vapor pressure, the model produces little change in cloud fraction. A more realistic perturbation, which considers the nonlinearity of the Clausius–Clapeyron relation and spatial structure of CO2-induced warming, results in a substantial reduction in the free-tropospheric cloud fraction. This is reconciled with an increase of relative humidity by analyzing the probability distributions of both quantities, and may help explain partly similar decreases in cloud fraction in full GCMs. The model provides a means to isolate individual processes or model components for studying their influences on cloud simulation in the extratropical free troposphere.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial