Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel: Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali

Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel: Evaluation... AbstractLand surface processes play an important role in the West African monsoon variability. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coefficients observed since the 1950s, has had a strong impact on water resources and on the occurrence of floods events. This study addresses results from phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2), carried out to evaluate the capability of different state-of-the-art land surface models to reproduce surface processes at the mesoscale. Evaluation of runoff and water fluxes over the Mali site is carried out through comparison with runoff estimations over endorheic watersheds as well as evapotranspiration (ET) measurements. Three remote-sensing-based ET products [ALEXI, MODIS, and Global Land Evaporation Amsterdam Model (GLEAM)] are also analyzed. It is found that, over deep sandy soils, surface runoff is generally overestimated, but the ALMIP2 multimodel mean reproduces in situ measurements of ET and water stress events rather well. However, ALMIP2 models are generally unable to distinguish among the two contrasted hydrological systems typical of the study area. Employing as input a soil map that explicitly represents shallow soils improves the representation of water fluxes for the models that can account for their representation. Shallow soils are shown to be also quite challenging for remote-sensing-based ET products, even if their effect on evaporative loss was captured by the diagnostic thermal-based ALEXI. A better representation of these soils, in soil databases, model parameterizations, and remote sensing algorithms, is fundamental to improve the estimation of water fluxes in this part of the Sahel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Modeling Surface Runoff and Water Fluxes over Contrasted Soils in the Pastoral Sahel: Evaluation of the ALMIP2 Land Surface Models over the Gourma Region in Mali

Loading next page...
 
/lp/ams/modeling-surface-runoff-and-water-fluxes-over-contrasted-soils-in-the-600IbfJYCG
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0170.1
Publisher site
See Article on Publisher Site

Abstract

AbstractLand surface processes play an important role in the West African monsoon variability. In addition, the evolution of hydrological systems in this region, and particularly the increase of surface water and runoff coefficients observed since the 1950s, has had a strong impact on water resources and on the occurrence of floods events. This study addresses results from phase 2 of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model Intercomparison Project (ALMIP2), carried out to evaluate the capability of different state-of-the-art land surface models to reproduce surface processes at the mesoscale. Evaluation of runoff and water fluxes over the Mali site is carried out through comparison with runoff estimations over endorheic watersheds as well as evapotranspiration (ET) measurements. Three remote-sensing-based ET products [ALEXI, MODIS, and Global Land Evaporation Amsterdam Model (GLEAM)] are also analyzed. It is found that, over deep sandy soils, surface runoff is generally overestimated, but the ALMIP2 multimodel mean reproduces in situ measurements of ET and water stress events rather well. However, ALMIP2 models are generally unable to distinguish among the two contrasted hydrological systems typical of the study area. Employing as input a soil map that explicitly represents shallow soils improves the representation of water fluxes for the models that can account for their representation. Shallow soils are shown to be also quite challenging for remote-sensing-based ET products, even if their effect on evaporative loss was captured by the diagnostic thermal-based ALEXI. A better representation of these soils, in soil databases, model parameterizations, and remote sensing algorithms, is fundamental to improve the estimation of water fluxes in this part of the Sahel.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial