Modeling Condensation in Deep Convection

Modeling Condensation in Deep Convection AbstractCloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Modeling Condensation in Deep Convection

Loading next page...
 
/lp/ams/modeling-condensation-in-deep-convection-ywbMCZPcqx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0255.1
Publisher site
See Article on Publisher Site

Abstract

AbstractCloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jul 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off