Modeling a Stratocumulus-Topped PBL: Intercomparison among Different One-Dimensional Codes and with Large Eddy Simulation

Modeling a Stratocumulus-Topped PBL: Intercomparison among Different One-Dimensional Codes and... Several one-dimensional (ID) cloud/turbulence ensemble modeling results of an idealized nighttime marine stratocumulus case are compared to large eddy simulation (LES). This type of model intercomparison was one of the objects of the first Global Energy and Water Cycle Experiment Cloud System Study boundary layer modeling workshop held at the National Center for Atmospheric Research on 1618 August 1994.Presented are results obtained with different 1D models, ranging from bulk models (including only one or two vertical layers) to various types (first order to third order) of multilayer turbulence closure models. The ID results fall within the scatter of the LES results. It is shown that ID models can reasonably represent the main features (cloud water content, cloud fraction, and some turbulence statistics) of a well-mixed stratocumulus-topped boundary layer.Also addressed is the question of what model complexity is necessary and can be afforded for a reasonable representation of stratocumulus clouds in mesoscale or global-scale operational models. Bulk models seem to be more appropriate for climate studies, whereas a multilayer turbulence scheme is best suited in mesoscale models having at least 100- to 200-m vertical resolution inside the boundary layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Modeling a Stratocumulus-Topped PBL: Intercomparison among Different One-Dimensional Codes and with Large Eddy Simulation

Loading next page...
 
/lp/ams/modeling-a-stratocumulus-topped-pbl-intercomparison-among-different-NSEPjjyUPs
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477-77.9.2033
Publisher site
See Article on Publisher Site

Abstract

Several one-dimensional (ID) cloud/turbulence ensemble modeling results of an idealized nighttime marine stratocumulus case are compared to large eddy simulation (LES). This type of model intercomparison was one of the objects of the first Global Energy and Water Cycle Experiment Cloud System Study boundary layer modeling workshop held at the National Center for Atmospheric Research on 1618 August 1994.Presented are results obtained with different 1D models, ranging from bulk models (including only one or two vertical layers) to various types (first order to third order) of multilayer turbulence closure models. The ID results fall within the scatter of the LES results. It is shown that ID models can reasonably represent the main features (cloud water content, cloud fraction, and some turbulence statistics) of a well-mixed stratocumulus-topped boundary layer.Also addressed is the question of what model complexity is necessary and can be afforded for a reasonable representation of stratocumulus clouds in mesoscale or global-scale operational models. Bulk models seem to be more appropriate for climate studies, whereas a multilayer turbulence scheme is best suited in mesoscale models having at least 100- to 200-m vertical resolution inside the boundary layer.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Sep 25, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off