Modeled Northern Hemisphere Autumn and Winter Climate Responses to Realistic Tibetan Plateau and Mongolia Snow Anomalies

Modeled Northern Hemisphere Autumn and Winter Climate Responses to Realistic Tibetan Plateau and... AbstractObservational studies link a persistent dipole of autumn and winter snow cover anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific-North America (PNA)-like atmospheric variations. This study investigates atmospheric responses to such snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent and sea surface temperature, and satellite observations of snow cover extent (SCE) and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses.The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Modeled Northern Hemisphere Autumn and Winter Climate Responses to Realistic Tibetan Plateau and Mongolia Snow Anomalies

Loading next page...
 
/lp/ams/modeled-northern-hemisphere-autumn-and-winter-climate-responses-to-kjo0CYVaAq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0117.1
Publisher site
See Article on Publisher Site

Abstract

AbstractObservational studies link a persistent dipole of autumn and winter snow cover anomalies over the Tibetan Plateau (TP) and Mongolia with winter Pacific-North America (PNA)-like atmospheric variations. This study investigates atmospheric responses to such snow forcings using multiple ensemble transient integrations of the CAM4 and CLM4.0 models. Model boundary conditions are based on climatological sea ice extent and sea surface temperature, and satellite observations of snow cover extent (SCE) and snow water equivalent (SWE) over the TP and Mongolia from October to March in 1997/98 (heavy TP and light Mongolia snow) and 1984/85 (light TP and heavy Mongolia snow), with model derived SCE and SWE elsewhere. In various forcing experiments, the ensemble-mean difference between simulations with these two extreme snow states identifies local, distant, concurrent, and delayed climatic responses.The main atmospheric responses to a dipole of high TP and low Mongolia SCE persisting from October to March (versus the opposite extreme) are strong TP surface cooling, warming in the surrounding China and Mongolia region, and a winter positive PNA-like response. The localized response is maintained by persistent diabatic cooling or heating, and the remote PNA response results mainly from the increased horizontal eastward propagation of stationary Rossby wave energy due to persistent TP snow forcing and also a winter transient eddy feedback mechanism. With a less persistent dipole anomaly in autumn or winter only, local responses are similar depending on the specific anomalies, but the winter PNA-like response is nearly absent or noticeably reduced.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off