Model Selection: Using Information Measures from Ordinal Symbolic Analysis to Select Model Subgrid-Scale Parameterizations

Model Selection: Using Information Measures from Ordinal Symbolic Analysis to Select Model... AbstractThe use of information measures for model selection in geophysical models with subgrid parameterizations is examined. Although the resolved dynamical equations of atmospheric or oceanic global numerical models are well established, the development and evaluation of parameterizations that represent subgrid-scale effects pose a big challenge. For climate studies, the parameters or parameterizations are usually selected according to a root-mean-square error criterion that measures the differences between the model-state evolution and observations along the trajectory. However, inaccurate initial conditions and systematic model errors contaminate root-mean-square error measures. In this work, information theory quantifiers, in particular Shannon entropy, statistical complexity, and Jensen–Shannon divergence, are evaluated as measures of the model dynamics. An ordinal analysis is conducted using the Bandt–Pompe symbolic data reduction in the signals. The proposed ordinal information measures are examined in the two-scale Lorenz-96 system. By comparing the two-scale Lorenz-96 system signals with a one-scale Lorenz-96 system with deterministic and stochastic parameterizations, the study shows that information measures are able to select the correct model and to distinguish the parameterizations, including the degree of stochasticity that results in the closest model dynamics to the two-scale Lorenz-96 system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Model Selection: Using Information Measures from Ordinal Symbolic Analysis to Select Model Subgrid-Scale Parameterizations

Loading next page...
 
/lp/ams/model-selection-using-information-measures-from-ordinal-symbolic-cINXB3kDJa
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0340.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe use of information measures for model selection in geophysical models with subgrid parameterizations is examined. Although the resolved dynamical equations of atmospheric or oceanic global numerical models are well established, the development and evaluation of parameterizations that represent subgrid-scale effects pose a big challenge. For climate studies, the parameters or parameterizations are usually selected according to a root-mean-square error criterion that measures the differences between the model-state evolution and observations along the trajectory. However, inaccurate initial conditions and systematic model errors contaminate root-mean-square error measures. In this work, information theory quantifiers, in particular Shannon entropy, statistical complexity, and Jensen–Shannon divergence, are evaluated as measures of the model dynamics. An ordinal analysis is conducted using the Bandt–Pompe symbolic data reduction in the signals. The proposed ordinal information measures are examined in the two-scale Lorenz-96 system. By comparing the two-scale Lorenz-96 system signals with a one-scale Lorenz-96 system with deterministic and stochastic parameterizations, the study shows that information measures are able to select the correct model and to distinguish the parameterizations, including the degree of stochasticity that results in the closest model dynamics to the two-scale Lorenz-96 system.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Oct 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off