Mixing Nonlocality and Mixing Anisotropy in an Idealized Western Boundary Current Jet

Mixing Nonlocality and Mixing Anisotropy in an Idealized Western Boundary Current Jet AbstractMotivated by the key role of western boundary currents in shaping water mass distribution and gyre water exchanges, this study characterizes mixing in an idealized western boundary current jet using a barotropic quasigeostrophic model with numerical particles deployed. Both the nonlocality of mixing, depicted by nonlocality ellipses, and mixing anisotropy, depicted by mixing ellipses, are estimated. Mixing is more nonlocal within the jet compared to the jet flanks. In general, the size of nonlocality ellipses, a metric of the degree of mixing nonlocality, scales with the eddy velocity magnitude and the equilibration time for diffusivity. The tilt and eccentricity of the nonlocality ellipses, a characterization of the anisotropy of mixing nonlocality, agree with those of momentum flux ellipses in the regions where mixing nonlocality is small. Mixing ellipse characteristics are flow regime dependent. In regions dominated by wave radiation, the mixing ellipses align with the contours of the wave streamfunction and are very anisotropic. Inside the recirculations, however, the mixing ellipses are nearly isotropic. Mixing ellipses are zonally elongated in the jet upstream because of the suppression of cross-jet mixing by the jet and the anisotropy of eddy velocity, and they can have negative minor axis length in the jet downstream, indicating negative cross-jet eddy diffusivity, which is consistent with upgradient eddy fluxes there. Thus, despite significant spatial heterogeneity in mixing nonlocality and anisotropy, in this idealized system at least, spatial patterns in these diagnostics tend to be relatively large scale and tied to larger-scale dynamics. The implications of these results to eddy parameterization and jet dynamics are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Mixing Nonlocality and Mixing Anisotropy in an Idealized Western Boundary Current Jet

Loading next page...
 
/lp/ams/mixing-nonlocality-and-mixing-anisotropy-in-an-idealized-western-g4K4Hj6zZE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0011.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMotivated by the key role of western boundary currents in shaping water mass distribution and gyre water exchanges, this study characterizes mixing in an idealized western boundary current jet using a barotropic quasigeostrophic model with numerical particles deployed. Both the nonlocality of mixing, depicted by nonlocality ellipses, and mixing anisotropy, depicted by mixing ellipses, are estimated. Mixing is more nonlocal within the jet compared to the jet flanks. In general, the size of nonlocality ellipses, a metric of the degree of mixing nonlocality, scales with the eddy velocity magnitude and the equilibration time for diffusivity. The tilt and eccentricity of the nonlocality ellipses, a characterization of the anisotropy of mixing nonlocality, agree with those of momentum flux ellipses in the regions where mixing nonlocality is small. Mixing ellipse characteristics are flow regime dependent. In regions dominated by wave radiation, the mixing ellipses align with the contours of the wave streamfunction and are very anisotropic. Inside the recirculations, however, the mixing ellipses are nearly isotropic. Mixing ellipses are zonally elongated in the jet upstream because of the suppression of cross-jet mixing by the jet and the anisotropy of eddy velocity, and they can have negative minor axis length in the jet downstream, indicating negative cross-jet eddy diffusivity, which is consistent with upgradient eddy fluxes there. Thus, despite significant spatial heterogeneity in mixing nonlocality and anisotropy, in this idealized system at least, spatial patterns in these diagnostics tend to be relatively large scale and tied to larger-scale dynamics. The implications of these results to eddy parameterization and jet dynamics are discussed.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Dec 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial