Memory Matters: A Case for Granger Causality in Climate Variability Studies

Memory Matters: A Case for Granger Causality in Climate Variability Studies AbstractIn climate variability studies, lagged linear regression is frequently used to infer causality. While lagged linear regression analysis can often provide valuable information about causal relationships, lagged regression is also susceptible to overreporting significant relationships when one or more of the variables has substantial memory (autocorrelation). Granger causality analysis takes into account the memory of the data and is therefore not susceptible to this issue. A simple Monte Carlo example highlights the advantages of Granger causality, compared to traditional lagged linear regression analysis in situations with one or more highly autocorrelated variables. Differences between the two approaches are further explored in two illustrative examples applicable to large-scale climate variability studies. Given that Granger causality is straightforward to calculate, Granger causality analysis may be preferable to traditional lagged regression analysis when one or more datasets has large memory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Memory Matters: A Case for Granger Causality in Climate Variability Studies

Loading next page...
 
/lp/ams/memory-matters-a-case-for-granger-causality-in-climate-variability-QKfBZBNzf6
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0334.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn climate variability studies, lagged linear regression is frequently used to infer causality. While lagged linear regression analysis can often provide valuable information about causal relationships, lagged regression is also susceptible to overreporting significant relationships when one or more of the variables has substantial memory (autocorrelation). Granger causality analysis takes into account the memory of the data and is therefore not susceptible to this issue. A simple Monte Carlo example highlights the advantages of Granger causality, compared to traditional lagged linear regression analysis in situations with one or more highly autocorrelated variables. Differences between the two approaches are further explored in two illustrative examples applicable to large-scale climate variability studies. Given that Granger causality is straightforward to calculate, Granger causality analysis may be preferable to traditional lagged regression analysis when one or more datasets has large memory.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial