Measurements of Directional Wave Spectra and Wind Stress from a Wave Glider Autonomous Surface Vehicle

Measurements of Directional Wave Spectra and Wind Stress from a Wave Glider Autonomous Surface... AbstractMethods for measuring waves and winds from a Wave Glider autonomous surface vehicle (ASV) are described and evaluated. The wave method utilizes the frequency spectra of orbital velocities measured by GPS, and the wind stress method utilizes the frequency spectra of turbulent wind fluctuations measured by an ultrasonic anemometer. Both methods evaluate contaminations from vehicle motion. The methods were evaluated with 68 days of data over a full range of open ocean conditions, in which wave heights varied from 1 to 8 m and wind speeds varied from 1 to 17 m s−1. Reference data were collected using additional sensors on board the vehicle. For the waves method, several additional datasets are included that use independently moored Datawell Waverider buoys as reference data. Bulk wave parameters are determined within 5% error with biases of less than 5%. Wind stress is determined within 4% error with 1% bias. Wave directional spectra also compare well, although the Wave Glider results have more spread at low frequencies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Measurements of Directional Wave Spectra and Wind Stress from a Wave Glider Autonomous Surface Vehicle

Loading next page...
 
/lp/ams/measurements-of-directional-wave-spectra-and-wind-stress-from-a-wave-U4qLqBuqna
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0091.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMethods for measuring waves and winds from a Wave Glider autonomous surface vehicle (ASV) are described and evaluated. The wave method utilizes the frequency spectra of orbital velocities measured by GPS, and the wind stress method utilizes the frequency spectra of turbulent wind fluctuations measured by an ultrasonic anemometer. Both methods evaluate contaminations from vehicle motion. The methods were evaluated with 68 days of data over a full range of open ocean conditions, in which wave heights varied from 1 to 8 m and wind speeds varied from 1 to 17 m s−1. Reference data were collected using additional sensors on board the vehicle. For the waves method, several additional datasets are included that use independently moored Datawell Waverider buoys as reference data. Bulk wave parameters are determined within 5% error with biases of less than 5%. Wind stress is determined within 4% error with 1% bias. Wave directional spectra also compare well, although the Wave Glider results have more spread at low frequencies.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Feb 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off