Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations

Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations AbstractOver two years of meteorological observations from Utö, a small island in the Finnish outer archipelago in the Baltic Sea, were used to investigate the occurrence and characteristics of low-level jets (LLJs) and the diurnal and seasonal variations in these properties. An objective LLJ identification algorithm that is suitable for high-temporal-and-vertical-resolution Doppler lidar data was created and applied to wind profiles obtained from a combination of Doppler lidar data and two-dimensional sonic anemometer observations. This algorithm was designed to identify coherent LLJ structures and requires that they persist for at least 1 h. The long-term mean LLJ frequency of occurrence at Utö was 12%, the mean LLJ wind speed was 11.6 m s−1, and the vast majority of identified LLJs occurred below 150 m above ground level. The LLJ frequency of occurrence was much higher during summer (21%) and spring (18%) than in autumn (8%) and winter (3%). During winter and spring, the LLJ frequency of occurrence is evenly distributed throughout the day. In contrast, the LLJ frequency of occurrence peaks at night (1900–0100 UTC) during summer and during the evening hours (1700–1900 UTC) in autumn. The highest and strongest LLJs come from the southwest, which is also the predominant LLJ direction in all seasons. LLJs below 100 m are common in spring and summer, are weaker, and do not show a strong directional dependence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations

Loading next page...
 
/lp/ams/low-level-jets-over-ut-finland-based-on-doppler-lidar-observations-dyym0Epxwv
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0411.1
Publisher site
See Article on Publisher Site

Abstract

AbstractOver two years of meteorological observations from Utö, a small island in the Finnish outer archipelago in the Baltic Sea, were used to investigate the occurrence and characteristics of low-level jets (LLJs) and the diurnal and seasonal variations in these properties. An objective LLJ identification algorithm that is suitable for high-temporal-and-vertical-resolution Doppler lidar data was created and applied to wind profiles obtained from a combination of Doppler lidar data and two-dimensional sonic anemometer observations. This algorithm was designed to identify coherent LLJ structures and requires that they persist for at least 1 h. The long-term mean LLJ frequency of occurrence at Utö was 12%, the mean LLJ wind speed was 11.6 m s−1, and the vast majority of identified LLJs occurred below 150 m above ground level. The LLJ frequency of occurrence was much higher during summer (21%) and spring (18%) than in autumn (8%) and winter (3%). During winter and spring, the LLJ frequency of occurrence is evenly distributed throughout the day. In contrast, the LLJ frequency of occurrence peaks at night (1900–0100 UTC) during summer and during the evening hours (1700–1900 UTC) in autumn. The highest and strongest LLJs come from the southwest, which is also the predominant LLJ direction in all seasons. LLJs below 100 m are common in spring and summer, are weaker, and do not show a strong directional dependence.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Sep 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off