Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic

Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic AbstractShortwave-absorbing aerosols seasonally cover and interact with an expansive low-level cloud deck over the southeast Atlantic. Daily anomalies of the MODIS low cloud fraction, fine-mode aerosol optical depth (AODf), and six ERA-Interim meteorological parameters (lower-tropospheric stability, 800-hPa subsidence, 600-hPa specific humidity, 1000- and 800-hPa horizontal temperature advection, and 1000-hPa geopotential height) are constructed spanning July–October (2001–12). A standardized multiple linear regression, whereby the change in the low cloud fraction to each component’s variability is normalized by one standard deviation, facilitates comparison between the different variables. Most cloud–meteorology relationships follow expected behavior for stratocumulus clouds. Of interest is the low cloud–subsidence relationship, whereby increasing subsidence increases low cloud cover between 10° and 20°S but decreases it elsewhere. Increases in AODf increase cloudiness everywhere, independent of other meteorological predictors. The cloud–AODf effect is partially compensated by accompanying increases in the midtropospheric moisture, which is associated with decreases in low cloud cover. This suggests that the free-tropospheric moisture affects the low cloud deck primarily through longwave radiation rather than mixing. The low cloud cover is also more sensitive to aerosol when the vertical distance between the cloud and aerosol layer is relatively small, which is more likely to occur early in the biomass burning season and farther offshore. A parallel statistical analysis that does not include AODf finds altered relationships between the low cloud cover changes and meteorology that can be understood through the aerosol cross-correlations with the meteorological predictors. For example, the low cloud–stability relationship appears stronger if aerosols are not explicitly included. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic

Loading next page...
 
/lp/ams/low-cloud-cover-sensitivity-to-biomass-burning-aerosols-and-3iB0dYE2HN
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0406.1
Publisher site
See Article on Publisher Site

Abstract

AbstractShortwave-absorbing aerosols seasonally cover and interact with an expansive low-level cloud deck over the southeast Atlantic. Daily anomalies of the MODIS low cloud fraction, fine-mode aerosol optical depth (AODf), and six ERA-Interim meteorological parameters (lower-tropospheric stability, 800-hPa subsidence, 600-hPa specific humidity, 1000- and 800-hPa horizontal temperature advection, and 1000-hPa geopotential height) are constructed spanning July–October (2001–12). A standardized multiple linear regression, whereby the change in the low cloud fraction to each component’s variability is normalized by one standard deviation, facilitates comparison between the different variables. Most cloud–meteorology relationships follow expected behavior for stratocumulus clouds. Of interest is the low cloud–subsidence relationship, whereby increasing subsidence increases low cloud cover between 10° and 20°S but decreases it elsewhere. Increases in AODf increase cloudiness everywhere, independent of other meteorological predictors. The cloud–AODf effect is partially compensated by accompanying increases in the midtropospheric moisture, which is associated with decreases in low cloud cover. This suggests that the free-tropospheric moisture affects the low cloud deck primarily through longwave radiation rather than mixing. The low cloud cover is also more sensitive to aerosol when the vertical distance between the cloud and aerosol layer is relatively small, which is more likely to occur early in the biomass burning season and farther offshore. A parallel statistical analysis that does not include AODf finds altered relationships between the low cloud cover changes and meteorology that can be understood through the aerosol cross-correlations with the meteorological predictors. For example, the low cloud–stability relationship appears stronger if aerosols are not explicitly included.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jun 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off