Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned Vehicles

Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned... AbstractUnmanned vehicles represent a significant technical improvement for ocean and atmospheric monitoring. With the increasing number of sensors mounted on the unmanned mobile platforms, the data volume and its rapid growth introduce a new challenge relative to the limited transmission bandwidth. Data compression provides an effective approach. However, installing a lossless compression algorithm in an embedded system, which is in fact limited in computing resources, scale, and energy consumption, is a challenging task. To address this issue, a novel self-adaptive lossless compression algorithm (SALCA) that is focused on the dynamic characteristics of multidisciplinary ocean and atmospheric observation data is proposed that is the extended work of two-model transmission theory. The proposed method uses a second-order linear predictor that can be changed as the input data vary and can achieve better lossless compression performance for dynamic ocean data. More than 200 groups of conductivity–temperature–depth (CTD) profile data from underwater gliders are used as the standard input, and the results show that compared to two state-of-the-art compression methods, the proposed compression algorithm performs better in terms of compression ratio and comprehensive power consumption in an embedded system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned Vehicles

Loading next page...
 
/lp/ams/lossless-data-compression-based-on-adaptive-linear-predictor-for-L7dR75aUPZ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0257.1
Publisher site
See Article on Publisher Site

Abstract

AbstractUnmanned vehicles represent a significant technical improvement for ocean and atmospheric monitoring. With the increasing number of sensors mounted on the unmanned mobile platforms, the data volume and its rapid growth introduce a new challenge relative to the limited transmission bandwidth. Data compression provides an effective approach. However, installing a lossless compression algorithm in an embedded system, which is in fact limited in computing resources, scale, and energy consumption, is a challenging task. To address this issue, a novel self-adaptive lossless compression algorithm (SALCA) that is focused on the dynamic characteristics of multidisciplinary ocean and atmospheric observation data is proposed that is the extended work of two-model transmission theory. The proposed method uses a second-order linear predictor that can be changed as the input data vary and can achieve better lossless compression performance for dynamic ocean data. More than 200 groups of conductivity–temperature–depth (CTD) profile data from underwater gliders are used as the standard input, and the results show that compared to two state-of-the-art compression methods, the proposed compression algorithm performs better in terms of compression ratio and comprehensive power consumption in an embedded system.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial