Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned Vehicles

Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned... AbstractUnmanned vehicles represent a significant technical improvement for ocean and atmospheric monitoring. With the increasing number of sensors mounted on the unmanned mobile platforms, the data volume and its rapid growth introduce a new challenge relative to the limited transmission bandwidth. Data compression provides an effective approach. However, installing a lossless compression algorithm in an embedded system, which is in fact limited in computing resources, scale, and energy consumption, is a challenging task. To address this issue, a novel self-adaptive lossless compression algorithm (SALCA) that is focused on the dynamic characteristics of multidisciplinary ocean and atmospheric observation data is proposed that is the extended work of two-model transmission theory. The proposed method uses a second-order linear predictor that can be changed as the input data vary and can achieve better lossless compression performance for dynamic ocean data. More than 200 groups of conductivity–temperature–depth (CTD) profile data from underwater gliders are used as the standard input, and the results show that compared to two state-of-the-art compression methods, the proposed compression algorithm performs better in terms of compression ratio and comprehensive power consumption in an embedded system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Lossless Data Compression Based on Adaptive Linear Predictor for Embedded System of Unmanned Vehicles

Loading next page...
 
/lp/ams/lossless-data-compression-based-on-adaptive-linear-predictor-for-L7dR75aUPZ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0257.1
Publisher site
See Article on Publisher Site

Abstract

AbstractUnmanned vehicles represent a significant technical improvement for ocean and atmospheric monitoring. With the increasing number of sensors mounted on the unmanned mobile platforms, the data volume and its rapid growth introduce a new challenge relative to the limited transmission bandwidth. Data compression provides an effective approach. However, installing a lossless compression algorithm in an embedded system, which is in fact limited in computing resources, scale, and energy consumption, is a challenging task. To address this issue, a novel self-adaptive lossless compression algorithm (SALCA) that is focused on the dynamic characteristics of multidisciplinary ocean and atmospheric observation data is proposed that is the extended work of two-model transmission theory. The proposed method uses a second-order linear predictor that can be changed as the input data vary and can achieve better lossless compression performance for dynamic ocean data. More than 200 groups of conductivity–temperature–depth (CTD) profile data from underwater gliders are used as the standard input, and the results show that compared to two state-of-the-art compression methods, the proposed compression algorithm performs better in terms of compression ratio and comprehensive power consumption in an embedded system.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off