Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer*

Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer* AbstractThe Ekman boundary layer (EBL) is a central problem in geophysical fluid dynamics that emerges when the pressure gradient force, the Coriolis force, and the frictional force interact in a flow. The unsteady version of the problem, which occurs when these forces are not in equilibrium, is solvable analytically only for a limited set of forcing variability regimes, and the resulting solutions are intricate and not always easy to interpret. In this paper, large-eddy simulations (LESs) of neutral atmospheric EBLs are conducted under various unsteady forcings to reveal the range of physical characteristics of the flow. Subsequently, it is demonstrated that the dynamics of the unsteady EBL can be reduced to a second-order ordinary differential equation that is very similar to the dynamical equation of a damped oscillator, such as a mass–spring–damper system. The validation of the proposed reduced model is performed by comparing its analytical solutions to LES results, revealing very good agreement. The reduced model can be solved for a wide range of variable forcing conditions, and this feature is exploited in the paper to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of Ekman flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer*

Loading next page...
 
/lp/ams/large-eddy-simulations-and-damped-oscillator-models-of-the-unsteady-PoOk1fWtC5
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-15-0038.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Ekman boundary layer (EBL) is a central problem in geophysical fluid dynamics that emerges when the pressure gradient force, the Coriolis force, and the frictional force interact in a flow. The unsteady version of the problem, which occurs when these forces are not in equilibrium, is solvable analytically only for a limited set of forcing variability regimes, and the resulting solutions are intricate and not always easy to interpret. In this paper, large-eddy simulations (LESs) of neutral atmospheric EBLs are conducted under various unsteady forcings to reveal the range of physical characteristics of the flow. Subsequently, it is demonstrated that the dynamics of the unsteady EBL can be reduced to a second-order ordinary differential equation that is very similar to the dynamical equation of a damped oscillator, such as a mass–spring–damper system. The validation of the proposed reduced model is performed by comparing its analytical solutions to LES results, revealing very good agreement. The reduced model can be solved for a wide range of variable forcing conditions, and this feature is exploited in the paper to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of Ekman flows.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jan 4, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial