LandAtmosphere Interaction Research, Early Results, and Opportunities in the Walnut River Watershed in Southeast Kansas: CASES and ABLE

LandAtmosphere Interaction Research, Early Results, and Opportunities in the Walnut River... This paper describes the development of the Cooperative Atmosphere Surface Exchange Study (CASES), its synergism with the development of the Atmosphere Boundary Layer Experiments (ABLE) and related efforts, CASES field programs, some early results, and future plans and opportunities. CASES is a grassroots multidisciplinary effort to study the interaction of the lower atmosphere with the land surface, the subsurface, and vegetation over timescales ranging from nearly instantaneous to years. CASES scientists developed a consensus that observations should be taken in a watershed between 50 and 100 km across; practical considerations led to an approach combining long-term data collection with episodic intensive field campaigns addressing specific objectives that should always include improvement of the design of the long-term instrumentation. In 1997, long-term measurements were initiated in the Walnut River Watershed east of Wichita, Kansas. Argonne National Laboratory started setting up the ABLE array. The first of the long-term hydrological enhancements was installed starting in May by the Hydrologic Science Team of Oregon State University. CASES-97, the first episodic field effort, was held during AprilJune to study the role of surface processes in the diurnal variation of the boundary layer, to test radar precipitation algorithms, and to define relevant scaling for precipitation and soil properties. The second episodic experiment, CASES-99, was conducted during October 1999, and focused on the stable boundary layer. Enhancements to both the atmospheric and hydrological arrays continue. The data from and information regarding both the long-term and episodic experiments are available on the World Wide Web. Scientists are invited to use the data and to consider the Walnut River Watershed for future field programs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/landatmosphere-interaction-research-early-results-and-opportunities-in-0OhTDzShEC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<0757:LIRERA>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

This paper describes the development of the Cooperative Atmosphere Surface Exchange Study (CASES), its synergism with the development of the Atmosphere Boundary Layer Experiments (ABLE) and related efforts, CASES field programs, some early results, and future plans and opportunities. CASES is a grassroots multidisciplinary effort to study the interaction of the lower atmosphere with the land surface, the subsurface, and vegetation over timescales ranging from nearly instantaneous to years. CASES scientists developed a consensus that observations should be taken in a watershed between 50 and 100 km across; practical considerations led to an approach combining long-term data collection with episodic intensive field campaigns addressing specific objectives that should always include improvement of the design of the long-term instrumentation. In 1997, long-term measurements were initiated in the Walnut River Watershed east of Wichita, Kansas. Argonne National Laboratory started setting up the ABLE array. The first of the long-term hydrological enhancements was installed starting in May by the Hydrologic Science Team of Oregon State University. CASES-97, the first episodic field effort, was held during AprilJune to study the role of surface processes in the diurnal variation of the boundary layer, to test radar precipitation algorithms, and to define relevant scaling for precipitation and soil properties. The second episodic experiment, CASES-99, was conducted during October 1999, and focused on the stable boundary layer. Enhancements to both the atmospheric and hydrological arrays continue. The data from and information regarding both the long-term and episodic experiments are available on the World Wide Web. Scientists are invited to use the data and to consider the Walnut River Watershed for future field programs.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 20, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off