Lake-Effect Mode and Precipitation Enhancement over the Tug Hill Plateau during OWLeS IOP2b

Lake-Effect Mode and Precipitation Enhancement over the Tug Hill Plateau during OWLeS IOP2b AbstractImproved understanding of the influence of orography on lake-effect storms is crucial for weather forecasting in many lake-effect regions. The Tug Hill Plateau of northern New York (hereafter Tug Hill), rising 500 m above eastern Lake Ontario, experiences some of the most intense snowstorms in the world. Herein the authors investigate the enhancement of lake-effect snowfall over Tug Hill during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. During the 24-h study period, total liquid precipitation equivalent along the axis of maximum precipitation increased from 33.5 mm at a lowland (145 m MSL) site to 62.5 mm at an upland (385 m MSL) site, the latter yielding 101.5 cm of snow. However, the ratio of upland to lowland precipitation, or orographic ratio, varied with the mode of lake-effect precipitation. Strongly organized long-lake-axis parallel bands, some of which formed in association with the approach or passage of upper-level short-wave troughs, produced the highest precipitation rates but the smallest orographic ratios. Within these bands, radar echoes were deepest and strongest over Lake Ontario and the coastal lowlands and decreased in depth and median intensity over Tug Hill. In contrast, nonbanded broad-coverage periods exhibited the smallest precipitation rates and the largest orographic ratios, the latter reflecting an increase in the coverage and frequency of radar echoes over Tug Hill. These findings should aid operational forecasts and, given the predominance of broad-coverage lake-effect periods during the cool season, help explain the climatological snowfall maximum found over the Tug Hill Plateau. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Lake-Effect Mode and Precipitation Enhancement over the Tug Hill Plateau during OWLeS IOP2b

Loading next page...
 
/lp/ams/lake-effect-mode-and-precipitation-enhancement-over-the-tug-hill-g6h2gx2Uvq
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-15-0412.1
Publisher site
See Article on Publisher Site

Abstract

AbstractImproved understanding of the influence of orography on lake-effect storms is crucial for weather forecasting in many lake-effect regions. The Tug Hill Plateau of northern New York (hereafter Tug Hill), rising 500 m above eastern Lake Ontario, experiences some of the most intense snowstorms in the world. Herein the authors investigate the enhancement of lake-effect snowfall over Tug Hill during IOP2b of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. During the 24-h study period, total liquid precipitation equivalent along the axis of maximum precipitation increased from 33.5 mm at a lowland (145 m MSL) site to 62.5 mm at an upland (385 m MSL) site, the latter yielding 101.5 cm of snow. However, the ratio of upland to lowland precipitation, or orographic ratio, varied with the mode of lake-effect precipitation. Strongly organized long-lake-axis parallel bands, some of which formed in association with the approach or passage of upper-level short-wave troughs, produced the highest precipitation rates but the smallest orographic ratios. Within these bands, radar echoes were deepest and strongest over Lake Ontario and the coastal lowlands and decreased in depth and median intensity over Tug Hill. In contrast, nonbanded broad-coverage periods exhibited the smallest precipitation rates and the largest orographic ratios, the latter reflecting an increase in the coverage and frequency of radar echoes over Tug Hill. These findings should aid operational forecasts and, given the predominance of broad-coverage lake-effect periods during the cool season, help explain the climatological snowfall maximum found over the Tug Hill Plateau.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: May 25, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off