Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System

Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System AbstractIn this study, coupled ocean–atmosphere–land–sea ice Earth system model (ESM) simulations driven separately by sea ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the sea ice loss response of the atmospheric circulation. A pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea ice loss and to the total low-latitude ocean surface warming. The proposed approach estimates the response to Arctic sea ice loss with low-latitude ocean temperatures fixed and vice versa. The sea ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy-driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea ice loss and low-latitude surface warming act in concert to reduce subseasonal temperature variability throughout the middle and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research Earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System

Loading next page...
 
/lp/ams/isolating-the-atmospheric-circulation-response-to-arctic-sea-ice-loss-jSnEovCfcR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0257.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn this study, coupled ocean–atmosphere–land–sea ice Earth system model (ESM) simulations driven separately by sea ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the sea ice loss response of the atmospheric circulation. A pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea ice loss and to the total low-latitude ocean surface warming. The proposed approach estimates the response to Arctic sea ice loss with low-latitude ocean temperatures fixed and vice versa. The sea ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy-driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea ice loss and low-latitude surface warming act in concert to reduce subseasonal temperature variability throughout the middle and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research Earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off