IS THE JANUARY THAW A STATISTICAL PHANTOM?

IS THE JANUARY THAW A STATISTICAL PHANTOM? The existence of the January thaw, a purported systematic anomalous warming in daily mean temperatures at northeastern U.S. stations during late January, is investigated quantitatively. A key idea in the analysis is that winter temperatures are intrinsically more variable, and this property must be accounted for when judging the unusualness of excursions of daily mean temperatures from a smooth climatic mean function. Accordingly the daily mean temperature departures are expressed nondimensionally by dividing by appropriate standard deviations that vary through the year. The warm excursion in observed records for late January is not always the most extreme such excursion in the nondimensionalized data, even when the definition of excursion is optimized to emphasize the late January event. Hypothesis tests based on time series models with smoothly varying climatologies (i.e., with no anomalous features such as the January thaw, by construction) are used to evaluate the statistical significance of the observed January thaws. The synthetic series produce many apparent events of similar character and magnitudes, although occurring randomly throughout the year and equally divided between warm and cool deviations. It is thus concluded that the effects of sampling in finite climate records are wholly adequate to account for the existence of January thaw features in northeastern U.S. temperature data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/is-the-january-thaw-a-statistical-phantom-D5UQOpN343
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2002)083<0053:ITJTAS>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

The existence of the January thaw, a purported systematic anomalous warming in daily mean temperatures at northeastern U.S. stations during late January, is investigated quantitatively. A key idea in the analysis is that winter temperatures are intrinsically more variable, and this property must be accounted for when judging the unusualness of excursions of daily mean temperatures from a smooth climatic mean function. Accordingly the daily mean temperature departures are expressed nondimensionally by dividing by appropriate standard deviations that vary through the year. The warm excursion in observed records for late January is not always the most extreme such excursion in the nondimensionalized data, even when the definition of excursion is optimized to emphasize the late January event. Hypothesis tests based on time series models with smoothly varying climatologies (i.e., with no anomalous features such as the January thaw, by construction) are used to evaluate the statistical significance of the observed January thaws. The synthetic series produce many apparent events of similar character and magnitudes, although occurring randomly throughout the year and equally divided between warm and cool deviations. It is thus concluded that the effects of sampling in finite climate records are wholly adequate to account for the existence of January thaw features in northeastern U.S. temperature data.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 28, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial