Investigating the Relationship between Lightning and Mesocyclonic Rotation in Supercell Thunderstorms

Investigating the Relationship between Lightning and Mesocyclonic Rotation in Supercell... AbstractRelationships between lightning and lightning jumps and physical updraft properties are frequently observed and generally understood. However, a more intensive characterization of how lightning relates to traditional radar-based metrics of storm intensity may provide further operational utility. This study addresses the supercell storm mode because of the intrinsic relationship between a supercell’s characteristic rotating updraft–downdraft couplet, or mesocyclone, and its prolific ability to produce severe weather. Lightning and radar measurements of a diverse sample of 19 supercell thunderstorms were used to assess the conceptual model that lightning and the mesocyclone may be linked by the updraft’s role in the formation and enhancement of each. Analysis of early stages of supercell development showed that the initial lightning jump occurred prior to the time of mesocyclogenesis inferred from three methods by median values of 5–10 min. Comparison between lightning jumps and subsequent increases in mesocyclonic rotation indicated that lightning can also be used to infer or confirm imminent strengthening or reintensification of the mesocyclone. Stronger relationships emerged in supercells that exhibited more robust updrafts, in which 85% of lightning jumps were associated with at least one increase in rotation and 77% of observed increases in rotation were temporally associated with a lightning jump. Preliminary results from analysis of the relationship between lightning jumps and intensification of the low-level mesocyclone in tornadic supercells also offer motivation for the future analysis of lightning data with respect to downdraft-related processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Investigating the Relationship between Lightning and Mesocyclonic Rotation in Supercell Thunderstorms

Loading next page...
 
/lp/ams/investigating-the-relationship-between-lightning-and-mesocyclonic-psDNLjGX7e
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0025.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRelationships between lightning and lightning jumps and physical updraft properties are frequently observed and generally understood. However, a more intensive characterization of how lightning relates to traditional radar-based metrics of storm intensity may provide further operational utility. This study addresses the supercell storm mode because of the intrinsic relationship between a supercell’s characteristic rotating updraft–downdraft couplet, or mesocyclone, and its prolific ability to produce severe weather. Lightning and radar measurements of a diverse sample of 19 supercell thunderstorms were used to assess the conceptual model that lightning and the mesocyclone may be linked by the updraft’s role in the formation and enhancement of each. Analysis of early stages of supercell development showed that the initial lightning jump occurred prior to the time of mesocyclogenesis inferred from three methods by median values of 5–10 min. Comparison between lightning jumps and subsequent increases in mesocyclonic rotation indicated that lightning can also be used to infer or confirm imminent strengthening or reintensification of the mesocyclone. Stronger relationships emerged in supercells that exhibited more robust updrafts, in which 85% of lightning jumps were associated with at least one increase in rotation and 77% of observed increases in rotation were temporally associated with a lightning jump. Preliminary results from analysis of the relationship between lightning jumps and intensification of the low-level mesocyclone in tornadic supercells also offer motivation for the future analysis of lightning data with respect to downdraft-related processes.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Dec 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off