Interpretation of Factors Controlling Low Cloud Cover and Low Cloud Feedback Using a Unified Predictive Index

Interpretation of Factors Controlling Low Cloud Cover and Low Cloud Feedback Using a Unified... AbstractThis paper reports on a new index for low cloud cover (LCC), the estimated cloud-top entrainment index (ECTEI), which is a modification of estimated inversion strength (EIS) and takes into account a cloud-top entrainment (CTE) criterion. Shipboard cloud observation data confirm that the index is strongly correlated with LCC. It is argued here that changes in LCC cannot be fully determined from changes in EIS only, but can be better determined from changes in both EIS and sea surface temperature (SST) based on the ECTEI. Furthermore, it is argued that various proposed predictors of LCC change, including the moist static energy vertical gradient, SST, and midlevel clouds, can be better understood from the perspective of the ECTEI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Interpretation of Factors Controlling Low Cloud Cover and Low Cloud Feedback Using a Unified Predictive Index

Loading next page...
 
/lp/ams/interpretation-of-factors-controlling-low-cloud-cover-and-low-cloud-IydnWtdWqn
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0825.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper reports on a new index for low cloud cover (LCC), the estimated cloud-top entrainment index (ECTEI), which is a modification of estimated inversion strength (EIS) and takes into account a cloud-top entrainment (CTE) criterion. Shipboard cloud observation data confirm that the index is strongly correlated with LCC. It is argued here that changes in LCC cannot be fully determined from changes in EIS only, but can be better determined from changes in both EIS and sea surface temperature (SST) based on the ECTEI. Furthermore, it is argued that various proposed predictors of LCC change, including the moist static energy vertical gradient, SST, and midlevel clouds, can be better understood from the perspective of the ECTEI.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial