Initiation of Deep Convection over an Idealized Mesoscale Convergence Line

Initiation of Deep Convection over an Idealized Mesoscale Convergence Line AbstractThis study performs cloud-resolving simulations of cumulus convection over an idealized surface-based convergence zone to investigate the mechanisms and sensitivities of deep convection initiation forced by mesoscale ascent. The surface convergence forms in response to a localized diurnal heating anomaly over an otherwise homogeneous and unheated surface, producing a strong boundary layer updraft over the center of the heat source. This updraft gives rise to a line of cumuli that gradually deepen and, in some cases, transition into deep convection. To statistically investigate the factors controlling this transition, a new thermal-tracking algorithm is developed to follow incipient cumulus cores as they ascend through the troposphere. This tool is used to isolate the impacts of key environmental parameters (cloud-layer lapse rate, midlevel humidity, etc.) and initial core parameters near cloud base (horizontal area, vertical velocity, etc.) on the ultimate cloud-top height. In general, the initial core size determines which thermals in a given cloud field will undergo the deepest ascent, and the sensitivity of cloud depth to initial core parameters increases in environments that are more hostile to deep convection. Diurnal midlevel moistening from detraining cumuli above the convergence line produces a small but robust enhancement in cloud-top height, particularly for smaller cores. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Initiation of Deep Convection over an Idealized Mesoscale Convergence Line

Loading next page...
 
/lp/ams/initiation-of-deep-convection-over-an-idealized-mesoscale-convergence-WWuE04aIGS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0221.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study performs cloud-resolving simulations of cumulus convection over an idealized surface-based convergence zone to investigate the mechanisms and sensitivities of deep convection initiation forced by mesoscale ascent. The surface convergence forms in response to a localized diurnal heating anomaly over an otherwise homogeneous and unheated surface, producing a strong boundary layer updraft over the center of the heat source. This updraft gives rise to a line of cumuli that gradually deepen and, in some cases, transition into deep convection. To statistically investigate the factors controlling this transition, a new thermal-tracking algorithm is developed to follow incipient cumulus cores as they ascend through the troposphere. This tool is used to isolate the impacts of key environmental parameters (cloud-layer lapse rate, midlevel humidity, etc.) and initial core parameters near cloud base (horizontal area, vertical velocity, etc.) on the ultimate cloud-top height. In general, the initial core size determines which thermals in a given cloud field will undergo the deepest ascent, and the sensitivity of cloud depth to initial core parameters increases in environments that are more hostile to deep convection. Diurnal midlevel moistening from detraining cumuli above the convergence line produces a small but robust enhancement in cloud-top height, particularly for smaller cores.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off