Initial Results of a New Composite-Weighted Algorithm for Dual-Polarized X-Band Rainfall Estimation

Initial Results of a New Composite-Weighted Algorithm for Dual-Polarized X-Band Rainfall Estimation AbstractData analyses for the mobile Iowa X-band polarimetric (XPOL) radar from a long-duration rain event that occurred during the NASA Iowa Flood Studies (IFloodS) field campaign are presented. A network of six 2D video disdrometers (2DVDs) is used to derive four rain-rate estimators for the XPOL-5 radar. The rain accumulation validations with a collocated network of twin and triple tipping-bucket rain gauges have highlighted the need for combined algorithms because no single estimator was found to be sufficient for all cases considered. A combined version of weighted and composite algorithms is introduced, including a new R(Ah, Zdr) rainfall estimator for X band, where Ah is the specific attenuation for horizontal polarization and Zdr is the differential reflectivity. Based on measurement and algorithm errors, the weights are derived to be as piecewise constant functions over reflectivity values. The weights are later turned into continuous functions using smoothing splines. A methodology to derive the weights in near–real time is proposed for the composite-weighted algorithm. Comparisons of 2-h accumulations and 8-h event totals obtained from the XPOL-5 with 12 rain gauges have shown 10%–40% improvement in normalized bias over individual rainfall estimators. The analyses have enabled the development of rain-rate estimators for the Iowa XPOL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Initial Results of a New Composite-Weighted Algorithm for Dual-Polarized X-Band Rainfall Estimation

Loading next page...
 
/lp/ams/initial-results-of-a-new-composite-weighted-algorithm-for-dual-FUVJA44UWw
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0196.1
Publisher site
See Article on Publisher Site

Abstract

AbstractData analyses for the mobile Iowa X-band polarimetric (XPOL) radar from a long-duration rain event that occurred during the NASA Iowa Flood Studies (IFloodS) field campaign are presented. A network of six 2D video disdrometers (2DVDs) is used to derive four rain-rate estimators for the XPOL-5 radar. The rain accumulation validations with a collocated network of twin and triple tipping-bucket rain gauges have highlighted the need for combined algorithms because no single estimator was found to be sufficient for all cases considered. A combined version of weighted and composite algorithms is introduced, including a new R(Ah, Zdr) rainfall estimator for X band, where Ah is the specific attenuation for horizontal polarization and Zdr is the differential reflectivity. Based on measurement and algorithm errors, the weights are derived to be as piecewise constant functions over reflectivity values. The weights are later turned into continuous functions using smoothing splines. A methodology to derive the weights in near–real time is proposed for the composite-weighted algorithm. Comparisons of 2-h accumulations and 8-h event totals obtained from the XPOL-5 with 12 rain gauges have shown 10%–40% improvement in normalized bias over individual rainfall estimators. The analyses have enabled the development of rain-rate estimators for the Iowa XPOL.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Apr 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off