Indian Ocean Dipole Modes Associated with Different Types of ENSO Development

Indian Ocean Dipole Modes Associated with Different Types of ENSO Development AbstractThis study identifies several modes of coevolution of various types of El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) by performing rotated season-reliant empirical orthogonal function (S-EOF) analysis with consideration of ENSO asymmetry. The first two modes reveal that early-onset ENSO is associated with subsequent strong IOD development, whereas late-onset ENSO forces an obscure IOD pattern with marginal SST anomalies in the western Indian Ocean. Further studies show that El Niño starting before early summer can more easily force an IOD event than that starting in late summer or fall, even when they are of equivalent magnitudes. This is because the atmospheric responses over the Indian Ocean to the eastern Pacific warming are in sharp contrast between early and late summer. Early-onset (late onset) El Niño can (cannot) cause favorable atmospheric circulation conditions over the Indian Ocean for inducing the western Indian Ocean warming, which facilitates the subsequent IOD development. In addition, the different propagations of ocean dynamic Rossby waves during the early- or late-onset types of ENSO are also accountable for the different IOD development. For the higher-order modes, the rotated S-EOF of “Niño only” cases shows a coevolution between a negative IOD mode and a date line Pacific El Niño, with warm sea surface temperature anomalies originating from the northern Pacific meridional mode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Indian Ocean Dipole Modes Associated with Different Types of ENSO Development

Loading next page...
 
/lp/ams/indian-ocean-dipole-modes-associated-with-different-types-of-enso-T0LtZ0HP1A
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0426.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study identifies several modes of coevolution of various types of El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) by performing rotated season-reliant empirical orthogonal function (S-EOF) analysis with consideration of ENSO asymmetry. The first two modes reveal that early-onset ENSO is associated with subsequent strong IOD development, whereas late-onset ENSO forces an obscure IOD pattern with marginal SST anomalies in the western Indian Ocean. Further studies show that El Niño starting before early summer can more easily force an IOD event than that starting in late summer or fall, even when they are of equivalent magnitudes. This is because the atmospheric responses over the Indian Ocean to the eastern Pacific warming are in sharp contrast between early and late summer. Early-onset (late onset) El Niño can (cannot) cause favorable atmospheric circulation conditions over the Indian Ocean for inducing the western Indian Ocean warming, which facilitates the subsequent IOD development. In addition, the different propagations of ocean dynamic Rossby waves during the early- or late-onset types of ENSO are also accountable for the different IOD development. For the higher-order modes, the rotated S-EOF of “Niño only” cases shows a coevolution between a negative IOD mode and a date line Pacific El Niño, with warm sea surface temperature anomalies originating from the northern Pacific meridional mode.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off