Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains

Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains AbstractEstimates of precipitation from the Weather Research and Forecasting (WRF) Model and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) are widely used in complex terrain to obtain spatially distributed precipitation data. The authors evaluated both WRF (4/3 km) and PRISM’s (800-m annual climatology) ability to estimate frozen precipitation using the hydrologic model Structure for Unifying Multiple Modeling Alternatives (SUMMA) and a unique set of spatiotemporal snow depth and snow water equivalent (SWE) observations collected for the Olympic Mountain Experiment (OLYMPEX) ground validation campaign during water year 2016. When SUMMA was forced with WRF precipitation and used a calibrated, wet-bulb-temperature-based method for partitioning rain versus snow, its estimation of near-peak SWE was biased low by 21% on average. However, when SUMMA was allowed to partition WRF total precipitation into rain and snow based on output from WRF’s microphysical scheme (WRFMPP), simulations of snow depth and SWE were near equal to or better than simulations that used PRISM-derived precipitation with the calibrated partitioning method. Over all sites, WRFMPP and simulations that used PRISM-derived precipitation had relatively unbiased estimates of near-peak SWE, but both simulated absolute errors in near-peak SWE of 30%–60% at a few locations. Since, on average, WRFMPP had similar errors to PRISM, WRFMPP suggested a promising path forward in hydrology, as it was independent of gauge data and did not require SWE observations for calibration. Furthermore, in similar maritime environments, hydrologic modelers should pay close attention to decisions regarding rain-versus-snow partitioning, wind speed, and incoming longwave radiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains

Loading next page...
 
/lp/ams/independent-evaluation-of-frozen-precipitation-from-wrf-and-prism-in-HgRGHC3J1w
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0026.1
Publisher site
See Article on Publisher Site

Abstract

AbstractEstimates of precipitation from the Weather Research and Forecasting (WRF) Model and the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) are widely used in complex terrain to obtain spatially distributed precipitation data. The authors evaluated both WRF (4/3 km) and PRISM’s (800-m annual climatology) ability to estimate frozen precipitation using the hydrologic model Structure for Unifying Multiple Modeling Alternatives (SUMMA) and a unique set of spatiotemporal snow depth and snow water equivalent (SWE) observations collected for the Olympic Mountain Experiment (OLYMPEX) ground validation campaign during water year 2016. When SUMMA was forced with WRF precipitation and used a calibrated, wet-bulb-temperature-based method for partitioning rain versus snow, its estimation of near-peak SWE was biased low by 21% on average. However, when SUMMA was allowed to partition WRF total precipitation into rain and snow based on output from WRF’s microphysical scheme (WRFMPP), simulations of snow depth and SWE were near equal to or better than simulations that used PRISM-derived precipitation with the calibrated partitioning method. Over all sites, WRFMPP and simulations that used PRISM-derived precipitation had relatively unbiased estimates of near-peak SWE, but both simulated absolute errors in near-peak SWE of 30%–60% at a few locations. Since, on average, WRFMPP had similar errors to PRISM, WRFMPP suggested a promising path forward in hydrology, as it was independent of gauge data and did not require SWE observations for calibration. Furthermore, in similar maritime environments, hydrologic modelers should pay close attention to decisions regarding rain-versus-snow partitioning, wind speed, and incoming longwave radiation.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Oct 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial