Increased Eddy Activity in the Northeastern Pacific during 1993–2011

Increased Eddy Activity in the Northeastern Pacific during 1993–2011 AbstractThe authors study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them, using the third version of the mesoscale eddy trajectory dataset released by Chelton and Schlax as well as other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increases, with interannual and decadal variabilities northeast of the Hawaiian–Emperor seamounts. The increasing EON is mainly due to the prolongation of eddy lifetimes associated with eddy intensification, particularly for anticyclonic eddies (AEs). The prolongation of eddy lifetimes results from weakened surface winds. The enhanced anticyclonic wind stress curl (WSC) injects more energy into the AEs in the study domain, providing a more suitable environment for their growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), may also modulate eddy activity in the NEP by exerting fluctuations in the surface wind system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Increased Eddy Activity in the Northeastern Pacific during 1993–2011

Loading next page...
1
 
/lp/ams/increased-eddy-activity-in-the-northeastern-pacific-during-1993-2011-RizwAtZS2B
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0309.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe authors study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them, using the third version of the mesoscale eddy trajectory dataset released by Chelton and Schlax as well as other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increases, with interannual and decadal variabilities northeast of the Hawaiian–Emperor seamounts. The increasing EON is mainly due to the prolongation of eddy lifetimes associated with eddy intensification, particularly for anticyclonic eddies (AEs). The prolongation of eddy lifetimes results from weakened surface winds. The enhanced anticyclonic wind stress curl (WSC) injects more energy into the AEs in the study domain, providing a more suitable environment for their growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO), may also modulate eddy activity in the NEP by exerting fluctuations in the surface wind system.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off