Improving Tropical Cyclone Intensity Forecasts with PRIME

Improving Tropical Cyclone Intensity Forecasts with PRIME AbstractThe Prediction of Intensity Model Error (PRIME) forecasting scheme uses various large-scale meteorological parameters as well as proxies for initial condition uncertainty and atmospheric flow stability to provide operational forecasts of tropical cyclone intensity forecast error. PRIME forecasts of bias and absolute error are developed for the Logistic Growth Equation Model (LGEM), Decay Statistical Hurricane Intensity Prediction Scheme (DSHP), Hurricane Weather Research and Forecasting Interpolated Model (HWFI), and Geophysical Fluid Dynamics Laboratory Interpolated Hurricane Model (GHMI). These forecasts are evaluated in the Atlantic and east Pacific basins for the 2011–15 hurricane seasons. PRIME is also trained with retrospective forecasts (R-PRIME) from the 2015 version of each model. PRIME error forecasts are significantly better than forecasts that use error climatology for a majority of forecast hours, which raises the question of whether PRIME could provide more than error guidance. PRIME bias forecasts for each model are used to modify intensity forecasts, and the corrected forecasts are compared with the original intensity forecasts. For almost all basins, forecast intervals, and versions of PRIME, the bias-corrected forecasts achieve significantly lower errors than the original intensity forecasts. PRIME absolute error and bias forecasts are also used to create unique ensembles of the four models. These PRIME-modified ensembles are found to frequently outperform the intensity consensus (ICON), the equally weighted ensemble of DSHP, LGEM, GHMI, and HWFI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Improving Tropical Cyclone Intensity Forecasts with PRIME

Loading next page...
 
/lp/ams/improving-tropical-cyclone-intensity-forecasts-with-prime-0l6lSkL0rn
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
eISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0009.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Prediction of Intensity Model Error (PRIME) forecasting scheme uses various large-scale meteorological parameters as well as proxies for initial condition uncertainty and atmospheric flow stability to provide operational forecasts of tropical cyclone intensity forecast error. PRIME forecasts of bias and absolute error are developed for the Logistic Growth Equation Model (LGEM), Decay Statistical Hurricane Intensity Prediction Scheme (DSHP), Hurricane Weather Research and Forecasting Interpolated Model (HWFI), and Geophysical Fluid Dynamics Laboratory Interpolated Hurricane Model (GHMI). These forecasts are evaluated in the Atlantic and east Pacific basins for the 2011–15 hurricane seasons. PRIME is also trained with retrospective forecasts (R-PRIME) from the 2015 version of each model. PRIME error forecasts are significantly better than forecasts that use error climatology for a majority of forecast hours, which raises the question of whether PRIME could provide more than error guidance. PRIME bias forecasts for each model are used to modify intensity forecasts, and the corrected forecasts are compared with the original intensity forecasts. For almost all basins, forecast intervals, and versions of PRIME, the bias-corrected forecasts achieve significantly lower errors than the original intensity forecasts. PRIME absolute error and bias forecasts are also used to create unique ensembles of the four models. These PRIME-modified ensembles are found to frequently outperform the intensity consensus (ICON), the equally weighted ensemble of DSHP, LGEM, GHMI, and HWFI.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Aug 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off