Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy

Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and... Warm-season quantitative precipitation forecasts (QPFs) are the poorest performance area of forecast systems worldwide. They stubbornly fall further behind while other aspects of weather prediction steadily improve. Unless a major effort is mounted to overcome the impediments to improved prediction, it is certain to remain the Achilles' heel of weather prediction, at a progressively greater cost to society. For these reasons and others, the Office of the Lead Scientist, U.S. Weather Research Program (USWRP), commissioned a workshop to examine future courses of action to improve understanding and prediction of heavy warm-season rainfall and associated flood forecasts. The workshop was held in Boulder, Colorado, in March 2002. It was attended by 75 people and produced numerous white papers and panel reports, all of which are readily available to the reader.Herein the major findings of the workshop are summarized, including an overarching strategy to achieve improved predictive skill and recommendations for future research and development. Improving warm-season QPFs requires a substantial and sustained commitment of resources focusing on a complex suite of issues. The basic strategy is to take those steps that will facilitate forecasting deep, moist convection in a fully probabilistic manner wherein the statistical properties of the forecast convection are similar to those observed in nature. A warm-season QPF program should be inclusive of a testbed framework, wherein development and testing of each and all components of the forecast system can be conducted; impediments to operations can be identified and corrected; and socioeconomic value, at the margin, can be researched and identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy

Loading next page...
 
/lp/ams/improving-quantitative-precipitation-forecasts-in-the-warm-season-a-gDBdypXKfO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-85-7-955
Publisher site
See Article on Publisher Site

Abstract

Warm-season quantitative precipitation forecasts (QPFs) are the poorest performance area of forecast systems worldwide. They stubbornly fall further behind while other aspects of weather prediction steadily improve. Unless a major effort is mounted to overcome the impediments to improved prediction, it is certain to remain the Achilles' heel of weather prediction, at a progressively greater cost to society. For these reasons and others, the Office of the Lead Scientist, U.S. Weather Research Program (USWRP), commissioned a workshop to examine future courses of action to improve understanding and prediction of heavy warm-season rainfall and associated flood forecasts. The workshop was held in Boulder, Colorado, in March 2002. It was attended by 75 people and produced numerous white papers and panel reports, all of which are readily available to the reader.Herein the major findings of the workshop are summarized, including an overarching strategy to achieve improved predictive skill and recommendations for future research and development. Improving warm-season QPFs requires a substantial and sustained commitment of resources focusing on a complex suite of issues. The basic strategy is to take those steps that will facilitate forecasting deep, moist convection in a fully probabilistic manner wherein the statistical properties of the forecast convection are similar to those observed in nature. A warm-season QPF program should be inclusive of a testbed framework, wherein development and testing of each and all components of the forecast system can be conducted; impediments to operations can be identified and corrected; and socioeconomic value, at the margin, can be researched and identified.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 18, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off