Improved Representation of Surface Spectral Emissivity in a Global Climate Model and Its Impact on Simulated Climate

Improved Representation of Surface Spectral Emissivity in a Global Climate Model and Its Impact... AbstractSurface longwave emissivity can be less than unity and vary significantly with frequency. However, most climate models still assume a blackbody surface in the longwave (LW) radiation scheme of their atmosphere models. This study incorporates realistic surface spectral emissivity into the atmospheric component of the Community Earth System Model (CESM), version 1.1.1, and evaluates its impact on simulated climate. By ensuring consistency of the broadband surface longwave flux across different components of the CESM, the top-of-the-atmosphere (TOA) energy balance in the modified model can be attained without retuning the model. Inclusion of surface spectral emissivity, however, leads to a decrease of net upward longwave flux at the surface and a comparable increase of latent heat flux. Global-mean surface temperature difference between the modified and standard CESM simulation is 0.20 K for the fully coupled run and 0.45 K for the slab-ocean run. Noticeable surface temperature differences between the modified and standard CESM simulations are seen over the Sahara Desert and polar regions. Accordingly, the climatological mean sea ice fraction in the modified CESM simulation can be less than that in the standard CESM simulation by as much as 0.1 in some regions. When spectral emissivities of sea ice and open ocean surfaces are considered, the broadband LW sea ice emissivity feedback is estimated to be −0.003 W m−2 K−1, assuming flat ice emissivity as sea ice emissivity, and 0.002 W m−2 K−1, assuming coarse snow emissivity as sea ice emissivity, which are two orders of magnitude smaller than the surface albedo feedback. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Improved Representation of Surface Spectral Emissivity in a Global Climate Model and Its Impact on Simulated Climate

Loading next page...
 
/lp/ams/improved-representation-of-surface-spectral-emissivity-in-a-global-PGgM00w9e0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0125.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSurface longwave emissivity can be less than unity and vary significantly with frequency. However, most climate models still assume a blackbody surface in the longwave (LW) radiation scheme of their atmosphere models. This study incorporates realistic surface spectral emissivity into the atmospheric component of the Community Earth System Model (CESM), version 1.1.1, and evaluates its impact on simulated climate. By ensuring consistency of the broadband surface longwave flux across different components of the CESM, the top-of-the-atmosphere (TOA) energy balance in the modified model can be attained without retuning the model. Inclusion of surface spectral emissivity, however, leads to a decrease of net upward longwave flux at the surface and a comparable increase of latent heat flux. Global-mean surface temperature difference between the modified and standard CESM simulation is 0.20 K for the fully coupled run and 0.45 K for the slab-ocean run. Noticeable surface temperature differences between the modified and standard CESM simulations are seen over the Sahara Desert and polar regions. Accordingly, the climatological mean sea ice fraction in the modified CESM simulation can be less than that in the standard CESM simulation by as much as 0.1 in some regions. When spectral emissivities of sea ice and open ocean surfaces are considered, the broadband LW sea ice emissivity feedback is estimated to be −0.003 W m−2 K−1, assuming flat ice emissivity as sea ice emissivity, and 0.002 W m−2 K−1, assuming coarse snow emissivity as sea ice emissivity, which are two orders of magnitude smaller than the surface albedo feedback.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off