Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME)

Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME) AbstractThis study assesses the forecast skill of eight North American Multimodel Ensemble (NMME) models in predicting Niño-3/-3.4 indices and improves their skill using Bayesian updating (BU). The forecast skill that is obtained using the ensemble mean of NMME (NMME-EM) shows a strong dependence on lead (initial) month and target month and is quite promising in terms of correlation, root-mean-square error (RMSE), standard deviation ratio (SDRatio), and probabilistic Brier skill score, especially at short lead months. However, the skill decreases in target months from late spring to summer owing to the spring predictability barrier. When BU is applied to eight NMME models (BU-Model), the forecasts tend to outperform NMME-EM in predicting Niño-3/-3.4 in terms of correlation, RMSE, and SDRatio. For Niño-3.4, the BU-Model outperforms NMME-EM forecasts for almost all leads (1–12; particularly for short leads) and target months (from January to December). However, for Niño-3, the BU-Model does not outperform NMME-EM forecasts for leads 7–11 and target months from June to October in terms of correlation and RMSE. Last, the authors test further potential improvements by preselecting “good” models (BU-Model-0.3) and by using principal component analysis to remove the multicollinearity among models, but these additional methodologies do not outperform the BU-Model, which produces the best forecasts of Niño-3/-3.4 for the 2015/16 El Niño event. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Improved ENSO Forecasting Using Bayesian Updating and the North American Multimodel Ensemble (NMME)

Loading next page...
 
/lp/ams/improved-enso-forecasting-using-bayesian-updating-and-the-north-jOLI0Gyygx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0073.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study assesses the forecast skill of eight North American Multimodel Ensemble (NMME) models in predicting Niño-3/-3.4 indices and improves their skill using Bayesian updating (BU). The forecast skill that is obtained using the ensemble mean of NMME (NMME-EM) shows a strong dependence on lead (initial) month and target month and is quite promising in terms of correlation, root-mean-square error (RMSE), standard deviation ratio (SDRatio), and probabilistic Brier skill score, especially at short lead months. However, the skill decreases in target months from late spring to summer owing to the spring predictability barrier. When BU is applied to eight NMME models (BU-Model), the forecasts tend to outperform NMME-EM in predicting Niño-3/-3.4 in terms of correlation, RMSE, and SDRatio. For Niño-3.4, the BU-Model outperforms NMME-EM forecasts for almost all leads (1–12; particularly for short leads) and target months (from January to December). However, for Niño-3, the BU-Model does not outperform NMME-EM forecasts for leads 7–11 and target months from June to October in terms of correlation and RMSE. Last, the authors test further potential improvements by preselecting “good” models (BU-Model-0.3) and by using principal component analysis to remove the multicollinearity among models, but these additional methodologies do not outperform the BU-Model, which produces the best forecasts of Niño-3/-3.4 for the 2015/16 El Niño event.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off