Important Factors for Tornadogenesis as Revealed by High-Resolution Ensemble Forecasts of the Tsukuba Supercell Tornado of 6 May 2012 in Japan

Important Factors for Tornadogenesis as Revealed by High-Resolution Ensemble Forecasts of the... AbstractTo identify important factors for supercell tornadogenesis, 33-member ensemble forecasts of the supercell tornado that struck the city of Tsukuba, Japan, on 6 May 2012 were conducted using a mesoscale numerical model with a 50-m horizontal grid. Based on the ensemble forecasts, the sources of the rotation of simulated tornadoes and the relationship between tornadogenesis and mesoscale environmental processes near the tornado were analyzed. Circulation analyses of near-surface, tornadolike vortices simulated in several ensemble members showed that the rotation of the tornadoes could be frictionally generated near the surface. However, the mechanisms responsible for generating circulation were only weakly related to the strength of the tornadoes. To identify the mesoscale processes required for tornadogenesis, mesoscale atmospheric conditions and their correlations with the strength of tornadoes were examined. The results showed that two near-tornado mesoscale factors were important for tornadogenesis: strong low-level mesocyclones (LMCs) at about 1 km above ground level and humid air near the surface. Strong LMCs and large water vapor near the surface strengthened the nonlinear dynamic vertical perturbation pressure gradient force and buoyancy, respectively. These upward forces made contributions essential for tornadogenesis via tilting and stretching of vorticity near the surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Important Factors for Tornadogenesis as Revealed by High-Resolution Ensemble Forecasts of the Tsukuba Supercell Tornado of 6 May 2012 in Japan

Loading next page...
 
/lp/ams/important-factors-for-tornadogenesis-as-revealed-by-high-resolution-yoV7Mr89vO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0254.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTo identify important factors for supercell tornadogenesis, 33-member ensemble forecasts of the supercell tornado that struck the city of Tsukuba, Japan, on 6 May 2012 were conducted using a mesoscale numerical model with a 50-m horizontal grid. Based on the ensemble forecasts, the sources of the rotation of simulated tornadoes and the relationship between tornadogenesis and mesoscale environmental processes near the tornado were analyzed. Circulation analyses of near-surface, tornadolike vortices simulated in several ensemble members showed that the rotation of the tornadoes could be frictionally generated near the surface. However, the mechanisms responsible for generating circulation were only weakly related to the strength of the tornadoes. To identify the mesoscale processes required for tornadogenesis, mesoscale atmospheric conditions and their correlations with the strength of tornadoes were examined. The results showed that two near-tornado mesoscale factors were important for tornadogenesis: strong low-level mesocyclones (LMCs) at about 1 km above ground level and humid air near the surface. Strong LMCs and large water vapor near the surface strengthened the nonlinear dynamic vertical perturbation pressure gradient force and buoyancy, respectively. These upward forces made contributions essential for tornadogenesis via tilting and stretching of vorticity near the surface.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Apr 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off