Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones

Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones AbstractThis study examines the impacts of tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on western North Pacific (WNP) landfalling tropical cyclones (TCs). The authors find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia. TNA SSTA influences the frequency of TC landfalls in these regions by regulating TC genesis location and frequency associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations over the South China Sea (SCS) and western Philippine Sea (WPS), and larger low-level relative vorticity, higher midlevel relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP (EWNP). More TCs forming over different regions are important for more TC landfalls in Vietnam (mainly forming over the SCS and WPS), south China (predominantly forming over the SCS), Taiwan (mostly forming over the WPS), and the Korean Peninsula and Japan (forming over the WPS and EWNP). Tracks of these landfalling TCs basically follow the mean steering flow in spite of different directions of steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies: the Indian Ocean relaying effect and the subtropical eastern Pacific relaying effect. The results of this study suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones

Loading next page...
 
/lp/ams/impacts-of-tropical-north-atlantic-sst-on-western-north-pacific-0lG1tAgl4S
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0325.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study examines the impacts of tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on western North Pacific (WNP) landfalling tropical cyclones (TCs). The authors find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia. TNA SSTA influences the frequency of TC landfalls in these regions by regulating TC genesis location and frequency associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations over the South China Sea (SCS) and western Philippine Sea (WPS), and larger low-level relative vorticity, higher midlevel relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP (EWNP). More TCs forming over different regions are important for more TC landfalls in Vietnam (mainly forming over the SCS and WPS), south China (predominantly forming over the SCS), Taiwan (mostly forming over the WPS), and the Korean Peninsula and Japan (forming over the WPS and EWNP). Tracks of these landfalling TCs basically follow the mean steering flow in spite of different directions of steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies: the Indian Ocean relaying effect and the subtropical eastern Pacific relaying effect. The results of this study suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall in China, Vietnam, the Korean Peninsula and Japan, and the entirety of East Asia.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial