Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific

Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone... AbstractThis study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent, and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification.A positive wind-sea surface temperature (SST)-precipitation feedback was found to facilitate the ability of the signal of the EOF-1 mode to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warms the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, and strengthens the monsoon trough and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Impacts of the Boreal Spring Indo-Pacific Warm Pool Hadley Circulation on Tropical Cyclone Activity over the Western North Pacific

Journal of Climate , Volume preprint (2017): 1 – Nov 14, 2017

Loading next page...
 
/lp/ams/impacts-of-the-boreal-spring-indo-pacific-warm-pool-hadley-circulation-chqlHpvQyn
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0422.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study investigated the impacts of the interannual variability in the boreal spring regional Hadley circulation over the Indo-Pacific warm pool (IPWP) on the tropical cyclone (TC) activity over the western North Pacific (WNP). The principal modes of the interannual variability in the IPWP Hadley circulation were calculated using empirical orthogonal function (EOF) analysis. The leading mode (EOF-1) features cross-equatorial southerly wind anomalies over the Indian Ocean and Maritime Continent, and has an evident impact on WNP TC activity during summer. In the summer following a positive phase of the EOF-1, a cyclonic circulation anomaly, with upward motion, positive relative vorticity anomalies, and weak sea level pressure, dominates the WNP, and this favors increased TC genesis. However, large positive vertical wind shear anomalies over the South China Sea and Philippine Sea inhibit the TC intensification.A positive wind-sea surface temperature (SST)-precipitation feedback was found to facilitate the ability of the signal of the EOF-1 mode to persist until the summer. The westerly wind anomalies converge around 10°N over the WNP, thus increasing precipitation, and this increased precipitation enhances the westerly wind anomalies via a Gill-type response. The strengthened westerly wind anomalies increase total wind speeds, which in turn cool the SST in the Bay of Bengal and the South China Sea, and warms the SST in the eastern WNP, increasing the zonal SST gradient. Consequently, this increased zonal SST gradient further enhances the westerly wind anomalies, and strengthens the monsoon trough and increases the WNP precipitation further. Therefore, the WNP precipitation anomalies are sustained into the summer.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial