Impacts of atmospheric processes on ENSO Asymmetry: A comparison between CESM1 and CCSM4

Impacts of atmospheric processes on ENSO Asymmetry: A comparison between CESM1 and CCSM4 AbstractAn evaluation of El Niño–La Niña asymmetry is conducted in two latest NCAR coupled models (CCSM4 and CESM1) sharing the same ocean component. Results show that two coupled models generally underestimate observed ENSO asymmetry, mainly owing to an overestimate of the cold SST anomaly during the La Niña phase. The weaker ENSO asymmetry corresponds to a cold bias in mean SST climatology that is more severe in CESM1 than in CCSM4, despite a better performance in simulating ENSO asymmetry in the former. Corresponding AMIP (CAM4 and CAM5) runs are examined to probe the origin of the weaker ENSO asymmetry in coupled models. The analysis reveals a stronger time mean zonal wind in AMIP models, favoring a cold bias in mean SST. The bias of the stronger mean wind, associated with changes in mean precipitation, is more significant in CAM5 than in CAM4. The simulated skewness of the interannual variability of zonal winds is weaker than observations, but somewhat improved in CAM5 compared to CAM4, primarily resulting from a more westward shift of easterly wind anomalies tied to the displacement of precipitation anomalies during the cold phase. Wind-forced ocean GCM experiments confirm that the bias in AMIP model winds can weaken ENSO asymmetry, with the contribution from the wind interannual variability being larger than from the mean winds. This demonstrates that the bias in ENSO asymmetry in coupled models can be traced back to the bias in the stand-alone atmosphere models to a large extent. The results pinpoint a pathway to reduce the bias in ENSO asymmetry in coupled models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Impacts of atmospheric processes on ENSO Asymmetry: A comparison between CESM1 and CCSM4

Loading next page...
 
/lp/ams/impacts-of-atmospheric-processes-on-enso-asymmetry-a-comparison-SccJHcorfu
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0360.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAn evaluation of El Niño–La Niña asymmetry is conducted in two latest NCAR coupled models (CCSM4 and CESM1) sharing the same ocean component. Results show that two coupled models generally underestimate observed ENSO asymmetry, mainly owing to an overestimate of the cold SST anomaly during the La Niña phase. The weaker ENSO asymmetry corresponds to a cold bias in mean SST climatology that is more severe in CESM1 than in CCSM4, despite a better performance in simulating ENSO asymmetry in the former. Corresponding AMIP (CAM4 and CAM5) runs are examined to probe the origin of the weaker ENSO asymmetry in coupled models. The analysis reveals a stronger time mean zonal wind in AMIP models, favoring a cold bias in mean SST. The bias of the stronger mean wind, associated with changes in mean precipitation, is more significant in CAM5 than in CAM4. The simulated skewness of the interannual variability of zonal winds is weaker than observations, but somewhat improved in CAM5 compared to CAM4, primarily resulting from a more westward shift of easterly wind anomalies tied to the displacement of precipitation anomalies during the cold phase. Wind-forced ocean GCM experiments confirm that the bias in AMIP model winds can weaken ENSO asymmetry, with the contribution from the wind interannual variability being larger than from the mean winds. This demonstrates that the bias in ENSO asymmetry in coupled models can be traced back to the bias in the stand-alone atmosphere models to a large extent. The results pinpoint a pathway to reduce the bias in ENSO asymmetry in coupled models.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Sep 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off