Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over Liguria, Italy

Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over Liguria, Italy AbstractThe autumn of 2014 was characterized by a number of severe weather episodes over Liguria (northern Italy) associated with floods and remarkable damage. This period is selected as a test bed to evaluate the performance of a rainfall assimilation scheme based on the nudging of humidity profiles and applied to a convection-permitting meteorological model at high resolution. The impact of the scheme is assessed in terms of quantitative precipitation forecast (QPF) applying an object-oriented verification methodology that evaluates the structure, amplitude, and location (SAL) of the precipitation field, but also in terms of hydrological discharge prediction. To attain this aim, the meteorological model is coupled with the operational hydrological forecasting chain of the Ligurian Hydrometeorological Functional Centre, and the whole system is implemented taking operational requirements into account. The impact of rainfall data assimilation is large during the assimilation period and still relevant in the following 3 h of the free forecasts, but hardly lasts more than 6 h. However, this can improve the hydrological predictions. Moreover, the impact of the assimilation is dependent on the environment characteristics, being more effective when nonequilibrium convection dominates, and thus an accurate prediction of the local triggering for the development of the precipitation system is required. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Impact of Rainfall Assimilation on High-Resolution Hydrometeorological Forecasts over Liguria, Italy

Loading next page...
 
/lp/ams/impact-of-rainfall-assimilation-on-high-resolution-hydrometeorological-GwJwKVAmfE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0073.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe autumn of 2014 was characterized by a number of severe weather episodes over Liguria (northern Italy) associated with floods and remarkable damage. This period is selected as a test bed to evaluate the performance of a rainfall assimilation scheme based on the nudging of humidity profiles and applied to a convection-permitting meteorological model at high resolution. The impact of the scheme is assessed in terms of quantitative precipitation forecast (QPF) applying an object-oriented verification methodology that evaluates the structure, amplitude, and location (SAL) of the precipitation field, but also in terms of hydrological discharge prediction. To attain this aim, the meteorological model is coupled with the operational hydrological forecasting chain of the Ligurian Hydrometeorological Functional Centre, and the whole system is implemented taking operational requirements into account. The impact of rainfall data assimilation is large during the assimilation period and still relevant in the following 3 h of the free forecasts, but hardly lasts more than 6 h. However, this can improve the hydrological predictions. Moreover, the impact of the assimilation is dependent on the environment characteristics, being more effective when nonequilibrium convection dominates, and thus an accurate prediction of the local triggering for the development of the precipitation system is required.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Oct 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off