Impact of a Front–Dryline Merger on Convection Initiation near a Mountain Ridge in Beijing

Impact of a Front–Dryline Merger on Convection Initiation near a Mountain Ridge in Beijing AbstractA case study is presented of convection initiation (CI) resulting from the merger of a cold front with a dryline in southwestern Beijing, China, on the afternoon of 11 June 2011. This process is analyzed with S-band Doppler radar data, surface automatic weather station data, and mesoscale numerical simulation results. The formation of this dryline is analogous to that on the Great Plains of the United States, and it is conducive to CI with mesoscale updrafts generated from the baroclinic frontogenesis, and with favorable instability immediately on the moist side. Prior to the front–dryline merger, as the cold front approached the observed boundary layer convergence line, or the simulated meso-γ-scale secondary dryline, CI occurred ahead of the cold front with little contribution from frontogenetic baroclinity of the dryline. The cold front then merged with the dryline, and the baroclinity of the dryline was enhanced by the associated convergence, to a degree comparable to that caused by frontogenesis of the dryline itself, thus leading to more CI. During the front–dryline merger, meso-γ-scale discrete cold pools associated with the cold front led to a diverse distribution of CI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Impact of a Front–Dryline Merger on Convection Initiation near a Mountain Ridge in Beijing

Loading next page...
 
/lp/ams/impact-of-a-front-dryline-merger-on-convection-initiation-near-a-6RuKXD0Mns
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0369.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA case study is presented of convection initiation (CI) resulting from the merger of a cold front with a dryline in southwestern Beijing, China, on the afternoon of 11 June 2011. This process is analyzed with S-band Doppler radar data, surface automatic weather station data, and mesoscale numerical simulation results. The formation of this dryline is analogous to that on the Great Plains of the United States, and it is conducive to CI with mesoscale updrafts generated from the baroclinic frontogenesis, and with favorable instability immediately on the moist side. Prior to the front–dryline merger, as the cold front approached the observed boundary layer convergence line, or the simulated meso-γ-scale secondary dryline, CI occurred ahead of the cold front with little contribution from frontogenetic baroclinity of the dryline. The cold front then merged with the dryline, and the baroclinity of the dryline was enhanced by the associated convergence, to a degree comparable to that caused by frontogenesis of the dryline itself, thus leading to more CI. During the front–dryline merger, meso-γ-scale discrete cold pools associated with the cold front led to a diverse distribution of CI.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off