Ice Particle Mass–Dimensional Relationship Retrieval and Uncertainty Evaluation Using the Optimal Estimation Methodology Applied to the MACPEX Data

Ice Particle Mass–Dimensional Relationship Retrieval and Uncertainty Evaluation Using the... AbstractA Bayesian optimal estimation methodology is applied to retrieve the time-varying ice particle mass–dimensional (M–D) relationships (i.e., M = amDbm) and the associated uncertainties using the in situ data that were collected by the NASA WB-57 during the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) in March and April 2011. The authors utilize the coincident measurements of bulk ice water content and projected cross-sectional area to constrain M–D relationships and estimate the uncertainties. It is demonstrated that the additional information provided by the particle area with respect to size could contribute considerable improvements to the algorithm performance. Extreme variability of M–D properties is found among cases as well as within individual cases, indicating the nondiscrete nature of ice crystal habits within cloud volumes and further suggesting the risk of assuming a constant M–D relationship in different conditions. Relative uncertainties of am are approximately from 50% to 80%, and relative uncertainties of bm range from 6% to 9.5%, which would cause approximately 2.5-dB uncertainty in forward-modeled radar reflectivity or a factor-of-2 uncertainty in ice water content. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Ice Particle Mass–Dimensional Relationship Retrieval and Uncertainty Evaluation Using the Optimal Estimation Methodology Applied to the MACPEX Data

Loading next page...
 
/lp/ams/ice-particle-mass-dimensional-relationship-retrieval-and-uncertainty-7xkcD78bfO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0222.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA Bayesian optimal estimation methodology is applied to retrieve the time-varying ice particle mass–dimensional (M–D) relationships (i.e., M = amDbm) and the associated uncertainties using the in situ data that were collected by the NASA WB-57 during the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) in March and April 2011. The authors utilize the coincident measurements of bulk ice water content and projected cross-sectional area to constrain M–D relationships and estimate the uncertainties. It is demonstrated that the additional information provided by the particle area with respect to size could contribute considerable improvements to the algorithm performance. Extreme variability of M–D properties is found among cases as well as within individual cases, indicating the nondiscrete nature of ice crystal habits within cloud volumes and further suggesting the risk of assuming a constant M–D relationship in different conditions. Relative uncertainties of am are approximately from 50% to 80%, and relative uncertainties of bm range from 6% to 9.5%, which would cause approximately 2.5-dB uncertainty in forward-modeled radar reflectivity or a factor-of-2 uncertainty in ice water content.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off