Ice Multiplication by Breakup in Ice–Ice Collisions. Part II: Numerical Simulations

Ice Multiplication by Breakup in Ice–Ice Collisions. Part II: Numerical Simulations AbstractIn Part I of this two-part paper, a formulation was developed to treat fragmentation in ice–ice collisions. In the present Part II, the formulation is implemented in two microphysically advanced cloud models simulating a convective line observed over the U.S. high plains. One model is 2D with a spectral bin microphysics scheme. The other has a hybrid bin–two-moment bulk microphysics scheme in 3D. The case consists of cumulonimbus cells with cold cloud bases (near 0°C) in a dry troposphere.Only with breakup included in the simulation are aircraft observations of particles with maximum dimensions >0.2 mm in the storm adequately predicted by both models. In fact, breakup in ice–ice collisions is by far the most prolific process of ice initiation in the simulated clouds (95%–98% of all nonhomogeneous ice), apart from homogeneous freezing of droplets. Inclusion of breakup in the cloud-resolving model (CRM) simulations increased, by between about one and two orders of magnitude, the average concentration of ice between about 0° and −30°C. Most of the breakup is due to collisions of snow with graupel/hail. It is broadly consistent with the theoretical result in Part I about an explosive tendency for ice multiplication.Breakup in collisions of snow (crystals >~1 mm and aggregates) with denser graupel/hail was the main pathway for collisional breakup and initiated about 60%–90% of all ice particles not from homogeneous freezing, in the simulations by both models. Breakup is predicted to reduce accumulated surface precipitation in the simulated storm by about 20%–40%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Loading next page...
 
/lp/ams/ice-multiplication-by-breakup-in-ice-ice-collisions-part-ii-numerical-wHa6v7lCKm
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0223.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn Part I of this two-part paper, a formulation was developed to treat fragmentation in ice–ice collisions. In the present Part II, the formulation is implemented in two microphysically advanced cloud models simulating a convective line observed over the U.S. high plains. One model is 2D with a spectral bin microphysics scheme. The other has a hybrid bin–two-moment bulk microphysics scheme in 3D. The case consists of cumulonimbus cells with cold cloud bases (near 0°C) in a dry troposphere.Only with breakup included in the simulation are aircraft observations of particles with maximum dimensions >0.2 mm in the storm adequately predicted by both models. In fact, breakup in ice–ice collisions is by far the most prolific process of ice initiation in the simulated clouds (95%–98% of all nonhomogeneous ice), apart from homogeneous freezing of droplets. Inclusion of breakup in the cloud-resolving model (CRM) simulations increased, by between about one and two orders of magnitude, the average concentration of ice between about 0° and −30°C. Most of the breakup is due to collisions of snow with graupel/hail. It is broadly consistent with the theoretical result in Part I about an explosive tendency for ice multiplication.Breakup in collisions of snow (crystals >~1 mm and aggregates) with denser graupel/hail was the main pathway for collisional breakup and initiated about 60%–90% of all ice particles not from homogeneous freezing, in the simulations by both models. Breakup is predicted to reduce accumulated surface precipitation in the simulated storm by about 20%–40%.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Sep 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off