How Persistent Are North Atlantic–European Sector Weather Regimes?

How Persistent Are North Atlantic–European Sector Weather Regimes? AbstractPersistent weather regimes in daily North Atlantic–European winter mean sea level pressure (MSLP) fields from the 140-yr Twentieth Century Reanalysis are investigated. The phase space is divided into discrete cells based on quantiles of empirical orthogonal function (EOF) principal components; the cells are thus approximately equally populated. An estimate of persistence is provided in terms of the number of different cells visited for a given trajectory duration. This technique is also applied to the well-known Lorenz63 system, which clearly exhibits two regimes, and the more complex Lorenz96 system where the regime structure is less pronounced. While the analysis identifies the two regimes of both the Lorenz63 and Lorenz96 systems, evidence for comparable regimes in the MSLP data is weaker. Recurrent weather regimes produced by k-means clustering might be expected to be clearly linked to slower-moving regions of phase space, but this is shown not to be the case. Only the region of phase space associated with the negative phase of the North Atlantic Oscillation (NAO) shows any regime-like behavior. Nevertheless, the analysis does reveal some structure to the time evolution of the atmospheric circulation—transitions between neighboring pairs of cells show a preferred direction of evolution in many cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

How Persistent Are North Atlantic–European Sector Weather Regimes?

Loading next page...
 
/lp/ams/how-persistent-are-north-atlantic-european-sector-weather-regimes-Kz7yIJYWfF
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0328.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPersistent weather regimes in daily North Atlantic–European winter mean sea level pressure (MSLP) fields from the 140-yr Twentieth Century Reanalysis are investigated. The phase space is divided into discrete cells based on quantiles of empirical orthogonal function (EOF) principal components; the cells are thus approximately equally populated. An estimate of persistence is provided in terms of the number of different cells visited for a given trajectory duration. This technique is also applied to the well-known Lorenz63 system, which clearly exhibits two regimes, and the more complex Lorenz96 system where the regime structure is less pronounced. While the analysis identifies the two regimes of both the Lorenz63 and Lorenz96 systems, evidence for comparable regimes in the MSLP data is weaker. Recurrent weather regimes produced by k-means clustering might be expected to be clearly linked to slower-moving regions of phase space, but this is shown not to be the case. Only the region of phase space associated with the negative phase of the North Atlantic Oscillation (NAO) shows any regime-like behavior. Nevertheless, the analysis does reveal some structure to the time evolution of the atmospheric circulation—transitions between neighboring pairs of cells show a preferred direction of evolution in many cases.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off