How Nanotechnology Can Revolutionize Meteorological Observing with Lagrangian Drifters

How Nanotechnology Can Revolutionize Meteorological Observing with Lagrangian Drifters The idea of using Lagrangian drifters for atmospheric sampling has been prevalent for more than 50 years. Substantial reductions in platform mass, size, and cost can now be realized by leveraging current and expected advances in micro- and ultimately nanotechnology. Such advancements have inspired a new observing system called Global Environmental Micro Sensors (GEMS). The initial GEMS concept envisioned developing and deploying large numbers of devices as small as 50100 im in one or more dimensions.The GEMS concept was evaluated during a multiyear study from 2002 to 2005 for the NASA Institute for Advanced Concepts. The current GEMS prototype features a 1-m, super-pressure balloon filled with helium to make it neutrally buoyant at different levels in the atmosphere. Once deployed, the probe measures temperature, pressure, relative humidity, velocity, and position information using microsensors as it drifts passively with the wind.Field experiments with GEMS prototypes were conducted in 2007 for a project called GEMS Test Operations in the Natural Environment (GEMSTONE). The success of the single-probe free flight test lasting more than 7 h fell short of the project goal but demonstrated system functionality and robustness. Follow-up efforts will address issues identified during the GEMSTONE project to feature multiprobe flight tests where probes travel hundreds of kilometers for several days. Significant reductions in mass and size of GEMS can be achieved through miniaturization/integration of probe components as well as advances in material sciences and bio-inspired designs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

How Nanotechnology Can Revolutionize Meteorological Observing with Lagrangian Drifters

Loading next page...
 
/lp/ams/how-nanotechnology-can-revolutionize-meteorological-observing-with-lsL9HQfWfk
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2008BAMS2529.1
Publisher site
See Article on Publisher Site

Abstract

The idea of using Lagrangian drifters for atmospheric sampling has been prevalent for more than 50 years. Substantial reductions in platform mass, size, and cost can now be realized by leveraging current and expected advances in micro- and ultimately nanotechnology. Such advancements have inspired a new observing system called Global Environmental Micro Sensors (GEMS). The initial GEMS concept envisioned developing and deploying large numbers of devices as small as 50100 im in one or more dimensions.The GEMS concept was evaluated during a multiyear study from 2002 to 2005 for the NASA Institute for Advanced Concepts. The current GEMS prototype features a 1-m, super-pressure balloon filled with helium to make it neutrally buoyant at different levels in the atmosphere. Once deployed, the probe measures temperature, pressure, relative humidity, velocity, and position information using microsensors as it drifts passively with the wind.Field experiments with GEMS prototypes were conducted in 2007 for a project called GEMS Test Operations in the Natural Environment (GEMSTONE). The success of the single-probe free flight test lasting more than 7 h fell short of the project goal but demonstrated system functionality and robustness. Follow-up efforts will address issues identified during the GEMSTONE project to feature multiprobe flight tests where probes travel hundreds of kilometers for several days. Significant reductions in mass and size of GEMS can be achieved through miniaturization/integration of probe components as well as advances in material sciences and bio-inspired designs.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Aug 1, 2008

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off