How Much Does “Backing Aloft” Actually Impact a Supercell?

How Much Does “Backing Aloft” Actually Impact a Supercell? AbstractAmong forecasters and storm chasers, there is a common perception that hodographs with counterclockwise curvature or kinking in the midlevels (sometimes called backing aloft or veer–back–veer profiles) are unfavorable for long-lived supercells and tornadoes. This study reviews and then evaluates several possible explanations for the purported negative effect of backing aloft. As a controlled hypothesis test, simulated supercells are initiated within a range of idealized wind profiles, many of which include representative counterclockwise kinks or bends in their hodographs. In these experiments, the short-term, direct impacts of backing aloft upon supercell maintenance are generally small. Backing aloft does modify the component of vertical accelerations linked to updraft–shear interactions, but these changes generally occur well above the level of free convection (LFC), and they are generally offset by substantial upward accelerations attributable to other processes (e.g., within-storm rotation and positive buoyancy). In these simulations, the longevity of isolated supercells seems to be most directly hindered in environments with very low storm-relative helicity (SRH) or else (for a line of supercells) substantial along-line flow in the upper troposphere. Although these two disrupting properties can accompany backing aloft, they are neither universally nor exclusively associated with it. From the perspective of storm dynamics, it seems advisable to focus on SRH and along-line flow in the environment, rather than the presence (or absence) of backing aloft in the wind profile. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

How Much Does “Backing Aloft” Actually Impact a Supercell?

Loading next page...
 
/lp/ams/how-much-does-backing-aloft-actually-impact-a-supercell-oNGmN3A7oH
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0064.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAmong forecasters and storm chasers, there is a common perception that hodographs with counterclockwise curvature or kinking in the midlevels (sometimes called backing aloft or veer–back–veer profiles) are unfavorable for long-lived supercells and tornadoes. This study reviews and then evaluates several possible explanations for the purported negative effect of backing aloft. As a controlled hypothesis test, simulated supercells are initiated within a range of idealized wind profiles, many of which include representative counterclockwise kinks or bends in their hodographs. In these experiments, the short-term, direct impacts of backing aloft upon supercell maintenance are generally small. Backing aloft does modify the component of vertical accelerations linked to updraft–shear interactions, but these changes generally occur well above the level of free convection (LFC), and they are generally offset by substantial upward accelerations attributable to other processes (e.g., within-storm rotation and positive buoyancy). In these simulations, the longevity of isolated supercells seems to be most directly hindered in environments with very low storm-relative helicity (SRH) or else (for a line of supercells) substantial along-line flow in the upper troposphere. Although these two disrupting properties can accompany backing aloft, they are neither universally nor exclusively associated with it. From the perspective of storm dynamics, it seems advisable to focus on SRH and along-line flow in the environment, rather than the presence (or absence) of backing aloft in the wind profile.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Oct 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off