How frequent is precipitation over the contiguous United States? Perspectives from ground-based and space-borne radars

How frequent is precipitation over the contiguous United States? Perspectives from ground-based... AbstractHigh temporal and spatial resolution observations of precipitation occurrence from the NEXRAD-based Multi-Radar Multi-Sensor System (MRMS) are compared to matched observations from CloudSat for three years over the contiguous United States (CONUS). Across the CONUS, precipitation is generally reported more frequently by CloudSat (7.8%) than by MRMS (6.3%), with dependence on factors such as the NEXRAD beam height, the near-surface air temperature, and the surface elevation. There is general agreement between ground-based and satellite-derived precipitation events over flat surfaces, especially in widespread precipitation events and when the NEXRAD beam heights are low. Within 100 km of the nearest NEXRAD site, MRMS reports a precipitation frequency of 7.54% while CloudSat reports 7.38%. However, further inspection reveals offsetting biases between the products, where CloudSat reports more snow and MRMS reports more rain. The magnitudes of these discrepancies correlate with elevation, but they are observed in both the complex terrain of the Rocky Mountains and the relatively flat Midwestern areas of the CONUS. The findings advocate for caution when using MRMS frequency and accumulations in complex terrain, when temperatures are below freezing, and at ranges greater than 100 km. A multi-resolution analysis shows that no more than 1.88% CloudSat pixels over flat terrain are incorrectly identified as non-precipitating as a result of shallow showers residing the CloudSat clutter-filled blind zone when near-surface air temperatures are above 15°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

How frequent is precipitation over the contiguous United States? Perspectives from ground-based and space-borne radars

Loading next page...
 
/lp/ams/how-frequent-is-precipitation-over-the-contiguous-united-states-LQt0NZhfG2
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0242.1
Publisher site
See Article on Publisher Site

Abstract

AbstractHigh temporal and spatial resolution observations of precipitation occurrence from the NEXRAD-based Multi-Radar Multi-Sensor System (MRMS) are compared to matched observations from CloudSat for three years over the contiguous United States (CONUS). Across the CONUS, precipitation is generally reported more frequently by CloudSat (7.8%) than by MRMS (6.3%), with dependence on factors such as the NEXRAD beam height, the near-surface air temperature, and the surface elevation. There is general agreement between ground-based and satellite-derived precipitation events over flat surfaces, especially in widespread precipitation events and when the NEXRAD beam heights are low. Within 100 km of the nearest NEXRAD site, MRMS reports a precipitation frequency of 7.54% while CloudSat reports 7.38%. However, further inspection reveals offsetting biases between the products, where CloudSat reports more snow and MRMS reports more rain. The magnitudes of these discrepancies correlate with elevation, but they are observed in both the complex terrain of the Rocky Mountains and the relatively flat Midwestern areas of the CONUS. The findings advocate for caution when using MRMS frequency and accumulations in complex terrain, when temperatures are below freezing, and at ranges greater than 100 km. A multi-resolution analysis shows that no more than 1.88% CloudSat pixels over flat terrain are incorrectly identified as non-precipitating as a result of shallow showers residing the CloudSat clutter-filled blind zone when near-surface air temperatures are above 15°C.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Mar 30, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial