Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Global Optimization of an Analog Method by Means of Genetic Algorithms

Global Optimization of an Analog Method by Means of Genetic Algorithms AbstractAnalog methods are based on a statistical relationship between synoptic meteorological variables (predictors) and local weather (predictand, to be predicted). This relationship is defined by several parameters, which are often calibrated by means of a semiautomatic sequential procedure. This calibration approach is fast, but has strong limitations. It proceeds through successive steps, and thus cannot handle all parameter dependencies. Furthermore, it cannot automatically optimize some parameters, such as the selection of pressure levels and temporal windows (hours of the day) at which the predictors are compared. To overcome these limitations, the global optimization technique of genetic algorithms is considered, which can jointly optimize all parameters of the method, and get closer to a global optimum, by taking into account the dependencies of the parameters. Moreover, it can objectively calibrate parameters that were previously assessed manually and can take into account new degrees of freedom. However, genetic algorithms must be tailored to the problem under consideration. Multiple combinations of algorithms were assessed, and new algorithms were developed (e.g., the chromosome of adaptive search radius, which is found to be very robust), in order to provide recommendations regarding the use of genetic algorithms for optimizing several variants of analog methods. A global optimization approach provides new perspectives for the improvement of analog methods, and for their application to new regions or new predictands. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Global Optimization of an Analog Method by Means of Genetic Algorithms

Loading next page...
1
 
/lp/ams/global-optimization-of-an-analog-method-by-means-of-genetic-algorithms-vfyJoi6E1J

References (87)

Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
DOI
10.1175/MWR-D-16-0093.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAnalog methods are based on a statistical relationship between synoptic meteorological variables (predictors) and local weather (predictand, to be predicted). This relationship is defined by several parameters, which are often calibrated by means of a semiautomatic sequential procedure. This calibration approach is fast, but has strong limitations. It proceeds through successive steps, and thus cannot handle all parameter dependencies. Furthermore, it cannot automatically optimize some parameters, such as the selection of pressure levels and temporal windows (hours of the day) at which the predictors are compared. To overcome these limitations, the global optimization technique of genetic algorithms is considered, which can jointly optimize all parameters of the method, and get closer to a global optimum, by taking into account the dependencies of the parameters. Moreover, it can objectively calibrate parameters that were previously assessed manually and can take into account new degrees of freedom. However, genetic algorithms must be tailored to the problem under consideration. Multiple combinations of algorithms were assessed, and new algorithms were developed (e.g., the chromosome of adaptive search radius, which is found to be very robust), in order to provide recommendations regarding the use of genetic algorithms for optimizing several variants of analog methods. A global optimization approach provides new perspectives for the improvement of analog methods, and for their application to new regions or new predictands.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Apr 7, 2017

There are no references for this article.