Global Modeling of the Contrail and Contrail Cirrus Climate Impact

Global Modeling of the Contrail and Contrail Cirrus Climate Impact Despite considerable technological advances, aviation impacts on global climate are significant and may constitute a future constraint on the continued growth of air travel. The most important but least understood component in aviation climate impact assessments are contrails, which form as line-shaped ice clouds (linear contrails) and transform into irregularly shaped ice clouds (contrail cirrus) in favorable meteorological conditions. No reliable best estimate of the contribution of contrail cirrus to climate change exists, but statistical evidence from cirrus trend analyses suggests a potentially large contribution. This article reviews the scientific knowledge and key problems regarding the modeling of the life cycle of contrail cirrus (including linear contrails), their global climate impact, and the validation of model simulations with suitable observational datasets. The prerequisites for global modeling of contrail cirrus, such as the representation of ice supersaturation and the processes governing contrail cirrus evolution as well as improvements in the cloud schemes regarding cirrus, are discussed. Recommendations are given for avenues of research to ensure that future decisions aimed at mitigating the climate impact of contrails and contrail cirrus are based on increasingly sound scientific knowledge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Global Modeling of the Contrail and Contrail Cirrus Climate Impact

Loading next page...
 
/lp/ams/global-modeling-of-the-contrail-and-contrail-cirrus-climate-impact-vi7rDRjCMw
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2009BAMS2656.1
Publisher site
See Article on Publisher Site

Abstract

Despite considerable technological advances, aviation impacts on global climate are significant and may constitute a future constraint on the continued growth of air travel. The most important but least understood component in aviation climate impact assessments are contrails, which form as line-shaped ice clouds (linear contrails) and transform into irregularly shaped ice clouds (contrail cirrus) in favorable meteorological conditions. No reliable best estimate of the contribution of contrail cirrus to climate change exists, but statistical evidence from cirrus trend analyses suggests a potentially large contribution. This article reviews the scientific knowledge and key problems regarding the modeling of the life cycle of contrail cirrus (including linear contrails), their global climate impact, and the validation of model simulations with suitable observational datasets. The prerequisites for global modeling of contrail cirrus, such as the representation of ice supersaturation and the processes governing contrail cirrus evolution as well as improvements in the cloud schemes regarding cirrus, are discussed. Recommendations are given for avenues of research to ensure that future decisions aimed at mitigating the climate impact of contrails and contrail cirrus are based on increasingly sound scientific knowledge.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 15, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial