Global Drought Watch from Space

Global Drought Watch from Space Drought is the most damaging environmental phenomenon. During 196791, droughts affected 50 of the 2.8 billion people who suffered from weather-related disasters. Since droughts cover large areas, it is difficult to monitor them using conventional systems. In recent years the National Oceanic and Atmospheric Administration has designed a new Advanced Very High Resolution Radiometer- (AVHRR) based Vegetation Condition Index (VCI) and Temperature Condition Index (TCI), which have been useful in detecting and monitoring large area, drought-related vegetation stress. The VCI was derived from the Normalized Difference Vegetation Index (NDVI), which is the ratio of the difference between AVHRR-measured near-infrared and visible reflectance to their sum. The TCI was derived from the 10.311.3-m AVHRR-measured radiances, converted to brightness temperature (BT). Algorithms were developed to reduce the noise and to adjust NDVI and BT for land surface nonhomogeneity. The VCI and TCI are used to determine the water- and temperature-related vegetation stress occuring during drought. This paper provides the principles of these indices, describes data processing, and gives examples of VCITCI applications in different ecological environments of the world. The results presented here are the first attempt to use both NDVI and thermal channels on a large area with very diversified ecological resources. The application of VCI and TCI are illustrated and validated by in situ measurements. These indices were also used for assessment of drought impact on regional agricultural production in South America, Africa, Asia, North America, and Europe. For this purpose, the average VCITCI values for a given region and for each week of the growing season were calculated and compared with yields of agricultural crops. The results showed a very strong correlation between these indices and yield, particularly during the critical periods of crop growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Global Drought Watch from Space

Loading next page...
 
/lp/ams/global-drought-watch-from-space-YMYyYlYHLo
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Drought is the most damaging environmental phenomenon. During 196791, droughts affected 50 of the 2.8 billion people who suffered from weather-related disasters. Since droughts cover large areas, it is difficult to monitor them using conventional systems. In recent years the National Oceanic and Atmospheric Administration has designed a new Advanced Very High Resolution Radiometer- (AVHRR) based Vegetation Condition Index (VCI) and Temperature Condition Index (TCI), which have been useful in detecting and monitoring large area, drought-related vegetation stress. The VCI was derived from the Normalized Difference Vegetation Index (NDVI), which is the ratio of the difference between AVHRR-measured near-infrared and visible reflectance to their sum. The TCI was derived from the 10.311.3-m AVHRR-measured radiances, converted to brightness temperature (BT). Algorithms were developed to reduce the noise and to adjust NDVI and BT for land surface nonhomogeneity. The VCI and TCI are used to determine the water- and temperature-related vegetation stress occuring during drought. This paper provides the principles of these indices, describes data processing, and gives examples of VCITCI applications in different ecological environments of the world. The results presented here are the first attempt to use both NDVI and thermal channels on a large area with very diversified ecological resources. The application of VCI and TCI are illustrated and validated by in situ measurements. These indices were also used for assessment of drought impact on regional agricultural production in South America, Africa, Asia, North America, and Europe. For this purpose, the average VCITCI values for a given region and for each week of the growing season were calculated and compared with yields of agricultural crops. The results showed a very strong correlation between these indices and yield, particularly during the critical periods of crop growth.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 23, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial