Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM Observations

Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM... AbstractUsing a 3-yr Global Precipitation Mission (GPM) Ku-band Precipitation Radar (KuPR) dataset, snow features (SFs) are defined by grouping the contiguous area of nonzero solid precipitation. The near-surface wet bulb temperatures calculated from ERA-Interim reanalysis data are used to verify that SFs are colder than 1°C to omit snowfall that melts before reaching the surface. The properties of SFs are summarized to understand the global distribution and characteristics of snow systems. The seasonal and diurnal variations of SFs and their properties are analyzed over Northern and Southern Hemispheric land and ocean separately.To quantify the amount of snow missed by the GPM KuPR and the amount of snow underestimated by the CloudSat Cloud Profiling (CPR), 3-yr KuPR pixel-level data are compared with 4-yr CloudSat CPR observations. The overall underestimation of snowfall during heavy snow events by CPR is less than 3% compared to the combined CPR and KuPR estimates. KuPR underestimates about 52% of weak snow. Only a small percentage of SFs have sizes greater than 10 000 km2 (0.35%), maximum near-surface reflectivity above 30 dBZ (5.1%), or echo top above 5 km (1.6%); however, they contribute 40%, 49.5%, or 30.4% of the global volumetric snow detected by KuPR. Snow in the Northern Hemisphere has stronger diurnal and seasonal variation compared to the Southern Hemisphere. Most of the SFs over the ocean are found with relatively smaller, less intense, and shallower echo tops than over land. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Global Distribution of Snow Precipitation Features and Their Properties from 3 Years of GPM Observations

Loading next page...
 
/lp/ams/global-distribution-of-snow-precipitation-features-and-their-EmlbVG4Xek
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0012.1
Publisher site
See Article on Publisher Site

Abstract

AbstractUsing a 3-yr Global Precipitation Mission (GPM) Ku-band Precipitation Radar (KuPR) dataset, snow features (SFs) are defined by grouping the contiguous area of nonzero solid precipitation. The near-surface wet bulb temperatures calculated from ERA-Interim reanalysis data are used to verify that SFs are colder than 1°C to omit snowfall that melts before reaching the surface. The properties of SFs are summarized to understand the global distribution and characteristics of snow systems. The seasonal and diurnal variations of SFs and their properties are analyzed over Northern and Southern Hemispheric land and ocean separately.To quantify the amount of snow missed by the GPM KuPR and the amount of snow underestimated by the CloudSat Cloud Profiling (CPR), 3-yr KuPR pixel-level data are compared with 4-yr CloudSat CPR observations. The overall underestimation of snowfall during heavy snow events by CPR is less than 3% compared to the combined CPR and KuPR estimates. KuPR underestimates about 52% of weak snow. Only a small percentage of SFs have sizes greater than 10 000 km2 (0.35%), maximum near-surface reflectivity above 30 dBZ (5.1%), or echo top above 5 km (1.6%); however, they contribute 40%, 49.5%, or 30.4% of the global volumetric snow detected by KuPR. Snow in the Northern Hemisphere has stronger diurnal and seasonal variation compared to the Southern Hemisphere. Most of the SFs over the ocean are found with relatively smaller, less intense, and shallower echo tops than over land.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off