GLD360 Performance Relative to TRMM LIS

GLD360 Performance Relative to TRMM LIS AbstractThis study evaluates the performance of the operational and reprocessed Global Lightning Dataset 360 (GLD360) data relative to the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) during 2012–14. The analysis compares ground- and space-based lightning observations to better characterize the pre- and postupgrade GLD360. The reprocessed, postupgrade data increase the fraction of LIS flashes detected by the GLD360 [i.e., relative detection efficiency (DE)]. The relative DE improves during each year in every region, and year-over-year improvement appears in both datasets. The reprocessed relative DE exceeds 40% throughout large portions of the study domain with relative maxima over the western Atlantic, eastern Pacific, and the Gulf of Mexico. The upgrade results in shorter distances between matched LIS and GLD360 locations, indicating improved location accuracy. On average, the matched LIS flashes last longer (18.6 ms) and are larger (379.3 km2) than the unmatched LIS flashes (6.1 ms, 251.0 km2). For each LIS characteristic examined, the greater the value, the more likely the GLD360 detects the flash. Of the matched LIS flashes, 44.3% have multiple GLD360 strokes, and the mean LIS characteristics increase with increasing stroke count. LIS flashes with four-plus related GLD360 strokes are longest (61.1 ms) and largest (492.7 km2). Of the multistroke flashes, 57.3% contain subsequent strokes that are stronger than the initial stroke. The vast majority of multistroke flashes with a first stroke estimated with a peak current of <10 kA have stronger subsequent strokes, suggesting that the GLD360 sometimes detects the initial cloud pulses associated with ground flashes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Loading next page...
 
/lp/ams/gld360-performance-relative-to-trmm-lis-5Shbd4GtQB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0243.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study evaluates the performance of the operational and reprocessed Global Lightning Dataset 360 (GLD360) data relative to the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) during 2012–14. The analysis compares ground- and space-based lightning observations to better characterize the pre- and postupgrade GLD360. The reprocessed, postupgrade data increase the fraction of LIS flashes detected by the GLD360 [i.e., relative detection efficiency (DE)]. The relative DE improves during each year in every region, and year-over-year improvement appears in both datasets. The reprocessed relative DE exceeds 40% throughout large portions of the study domain with relative maxima over the western Atlantic, eastern Pacific, and the Gulf of Mexico. The upgrade results in shorter distances between matched LIS and GLD360 locations, indicating improved location accuracy. On average, the matched LIS flashes last longer (18.6 ms) and are larger (379.3 km2) than the unmatched LIS flashes (6.1 ms, 251.0 km2). For each LIS characteristic examined, the greater the value, the more likely the GLD360 detects the flash. Of the matched LIS flashes, 44.3% have multiple GLD360 strokes, and the mean LIS characteristics increase with increasing stroke count. LIS flashes with four-plus related GLD360 strokes are longest (61.1 ms) and largest (492.7 km2). Of the multistroke flashes, 57.3% contain subsequent strokes that are stronger than the initial stroke. The vast majority of multistroke flashes with a first stroke estimated with a peak current of <10 kA have stronger subsequent strokes, suggesting that the GLD360 sometimes detects the initial cloud pulses associated with ground flashes.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jun 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off