Generation of Subsurface Anticyclones at Arctic Surface Fronts due to a Surface Stress

Generation of Subsurface Anticyclones at Arctic Surface Fronts due to a Surface Stress AbstractIsolated anticyclones are frequently observed below the mixed layer in the Arctic Ocean. Some of these subsurface anticyclones are thought to originate at surface fronts. However, previous idealized simulations with no surface stress show that only cyclone–anticyclone dipoles can propagate away from baroclinically unstable surface fronts. Numerical simulations of fronts subject to a surface stress presented here show that a surface stress in the same direction as the geostrophic flow inhibits dipole propagation away from the front. On the other hand, a surface stress in the opposite direction to the geostrophic flow helps dipoles to propagate away from the front. Regardless of the surface stress at the point of dipole formation, these dipoles can be broken up on a time scale of days when a surface stress is applied in the right direction. The dipole breakup leads to the deeper anticyclonic component becoming an isolated subsurface eddy. The breakup of the dipole occurs because the cyclonic component of the dipole in the mixed layer is subject to an additional advection because of the Ekman flow. When the Ekman transport has a component oriented from the anticyclonic part of the dipole toward the cyclonic part then the cyclone is advected away from the anticyclone and the dipole is broken up. When the Ekman transport is in other directions relative to the dipole axis, it also leads to deviations in the trajectory of the dipole. A scaling is presented for the rate at which the surface cyclone is advected that holds across a range of mixed layer depths and surface stress magnitudes in these simulations. The results may be relevant to other regions of the ocean with similar near-surface stratification profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Generation of Subsurface Anticyclones at Arctic Surface Fronts due to a Surface Stress

Loading next page...
 
/lp/ams/generation-of-subsurface-anticyclones-at-arctic-surface-fronts-due-to-CmLuhk1Nfu
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0022.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIsolated anticyclones are frequently observed below the mixed layer in the Arctic Ocean. Some of these subsurface anticyclones are thought to originate at surface fronts. However, previous idealized simulations with no surface stress show that only cyclone–anticyclone dipoles can propagate away from baroclinically unstable surface fronts. Numerical simulations of fronts subject to a surface stress presented here show that a surface stress in the same direction as the geostrophic flow inhibits dipole propagation away from the front. On the other hand, a surface stress in the opposite direction to the geostrophic flow helps dipoles to propagate away from the front. Regardless of the surface stress at the point of dipole formation, these dipoles can be broken up on a time scale of days when a surface stress is applied in the right direction. The dipole breakup leads to the deeper anticyclonic component becoming an isolated subsurface eddy. The breakup of the dipole occurs because the cyclonic component of the dipole in the mixed layer is subject to an additional advection because of the Ekman flow. When the Ekman transport has a component oriented from the anticyclonic part of the dipole toward the cyclonic part then the cyclone is advected away from the anticyclone and the dipole is broken up. When the Ekman transport is in other directions relative to the dipole axis, it also leads to deviations in the trajectory of the dipole. A scaling is presented for the rate at which the surface cyclone is advected that holds across a range of mixed layer depths and surface stress magnitudes in these simulations. The results may be relevant to other regions of the ocean with similar near-surface stratification profiles.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Nov 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off