Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for Microwave Radiometers

Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for... AbstractAn orographic/nonorographic rainfall classification scheme has been introduced for the operational algorithm of the Global Satellite Mapping of Precipitation (GSMaP) for passive microwave radiometers. However, problems of overestimations and false alarms of heavy orographic rainfall remain unresolved. This is because the current scheme selected lower constant thresholds of orographic rainfall conditions for global application and used values of orographically forced upward motion w derived from near-surface atmospheric data. This study improves the conceptual model of the warm-rain process for considering the strength of the upstream flow of the low-level troposphere. Under a weak upstream current, rain reaches the foothills of the windward mountain slope because of sufficient time for condensation and precipitation enhancement by the topography. Conversely, under a strong upstream current, precipitation enhancement occurs nearer to the mountain peak. This is because the upstream current flows so quickly that there is insufficient time for enhancement of precipitation over the foothills of the windward mountain slope. After implementing a variable threshold for w that depends on the mean horizontal low-level wind, the area of orographic enhancement of rain was detected reasonably well in cases of both strong and weak winds. To improve the accuracy of estimates of orographic rainfall, an adjustment to the rain estimation was introduced using a lower-frequency channel. The biases of the rainfall estimate for the adjusted scheme from the Tropical Rainfall Measuring Mission Precipitation Radar were improved for the cases considered here as well as for the Asian region of heavy orographic rainfall over land. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for Microwave Radiometers

Loading next page...
 
/lp/ams/further-improvement-of-the-heavy-orographic-rainfall-retrievals-in-the-ySBDUXGOzH
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0332.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAn orographic/nonorographic rainfall classification scheme has been introduced for the operational algorithm of the Global Satellite Mapping of Precipitation (GSMaP) for passive microwave radiometers. However, problems of overestimations and false alarms of heavy orographic rainfall remain unresolved. This is because the current scheme selected lower constant thresholds of orographic rainfall conditions for global application and used values of orographically forced upward motion w derived from near-surface atmospheric data. This study improves the conceptual model of the warm-rain process for considering the strength of the upstream flow of the low-level troposphere. Under a weak upstream current, rain reaches the foothills of the windward mountain slope because of sufficient time for condensation and precipitation enhancement by the topography. Conversely, under a strong upstream current, precipitation enhancement occurs nearer to the mountain peak. This is because the upstream current flows so quickly that there is insufficient time for enhancement of precipitation over the foothills of the windward mountain slope. After implementing a variable threshold for w that depends on the mean horizontal low-level wind, the area of orographic enhancement of rain was detected reasonably well in cases of both strong and weak winds. To improve the accuracy of estimates of orographic rainfall, an adjustment to the rain estimation was introduced using a lower-frequency channel. The biases of the rainfall estimate for the adjusted scheme from the Tropical Rainfall Measuring Mission Precipitation Radar were improved for the cases considered here as well as for the Asian region of heavy orographic rainfall over land.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Sep 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off